Research on the Optimization Strategy of the Low-Carbon Economic Development Model based on the BP Neural Network Model

低碳经济 温室气体 自然资源经济学 环境经济学 能源消耗 消费(社会学) 气候变化 环境科学 经济 经济体制 工程类 生态学 社会科学 社会学 电气工程 生物
作者
Yufeng Zhang,Xun Tang,Jianfei Yang
出处
期刊:Mathematical Problems in Engineering [Hindawi Limited]
卷期号:2022: 1-8 被引量:1
标识
DOI:10.1155/2022/4126074
摘要

Low-carbon economy has become a topic of great concern to the international community. Sea level rise caused by climate change, flood disasters, biodiversity reduction, global famine, and other issues have begun to threaten the normal survival of human beings, and the climate problem needs to be solved urgently. While ensuring rapid economic development, in order to better control the total amount of greenhouse gas emissions, this paper, based on the theory of low-carbon economy, takes control of total carbon emissions for low-carbon economic development, as a perspective, and selects the optimization for the development of low-carbon economy. From the aspects of structural emission reduction technology and emission reduction, a carbon emission control optimization index system for low-carbon economic development based on total carbon emission control is constructed. Under the framework of the index system, construct an optimization model for the total amount of carbon emissions in a low-carbon economy and use the BP neural network model to seek the balance point between economic development, energy consumption, and carbon emissions so as to promote the rational and scientific development of the low-carbon economy. Planning and development. First of all, on the premise of maintaining the same economic growth rate, the optimization plan will reduce carbon emissions. Secondly, on the premise of keeping the cost of energy consumption unchanged, it is more reasonable to adjust the energy consumption structure. Taking the optimization plan as the suggestion for the development direction of the low-carbon economy, it provides scientific and feasible technical support for achieving the emission reduction target of reducing the unit greenhouse gas emission to 40%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
A3000给A3000的求助进行了留言
刚刚
桃桃发布了新的文献求助10
刚刚
大渣饼完成签到 ,获得积分10
1秒前
GQ完成签到,获得积分10
3秒前
仇行恶完成签到,获得积分20
4秒前
仇行恶发布了新的文献求助10
7秒前
非要叫我起个昵称完成签到,获得积分10
9秒前
yakyi发布了新的文献求助10
10秒前
Docline完成签到,获得积分10
11秒前
Akim应助缓慢思枫采纳,获得30
11秒前
世上无难事完成签到 ,获得积分10
13秒前
搜集达人应助Qqqqqq采纳,获得10
14秒前
风止完成签到 ,获得积分10
16秒前
青思发布了新的文献求助10
16秒前
张流筝完成签到 ,获得积分10
18秒前
InfoNinja应助追寻的山晴采纳,获得30
19秒前
22秒前
23秒前
tanhaowen完成签到 ,获得积分10
24秒前
zho应助煮饭吃Zz采纳,获得10
25秒前
AoAoo发布了新的文献求助10
25秒前
时尚的电脑完成签到 ,获得积分10
25秒前
kobespecial发布了新的文献求助30
27秒前
啊楠发布了新的文献求助10
27秒前
搁浅发布了新的文献求助10
28秒前
28秒前
29秒前
李圣杰完成签到 ,获得积分10
29秒前
谨慎傲旋完成签到 ,获得积分10
31秒前
姜呱呱呱完成签到,获得积分10
31秒前
man完成签到,获得积分10
31秒前
科研通AI2S应助Diudu采纳,获得10
33秒前
33秒前
田田完成签到 ,获得积分10
34秒前
026完成签到 ,获得积分10
34秒前
小二郎应助aq22采纳,获得30
34秒前
35秒前
哟哟哟发布了新的文献求助10
35秒前
36秒前
41秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159782
求助须知:如何正确求助?哪些是违规求助? 2810676
关于积分的说明 7889078
捐赠科研通 2469740
什么是DOI,文献DOI怎么找? 1315055
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012