Research on the Optimization Strategy of the Low-Carbon Economic Development Model based on the BP Neural Network Model

低碳经济 温室气体 自然资源经济学 环境经济学 能源消耗 消费(社会学) 气候变化 环境科学 经济 经济体制 工程类 生态学 社会科学 生物 电气工程 社会学
作者
Yufeng Zhang,Xun Tang,Jianfei Yang
出处
期刊:Mathematical Problems in Engineering [Hindawi Publishing Corporation]
卷期号:2022: 1-8 被引量:1
标识
DOI:10.1155/2022/4126074
摘要

Low-carbon economy has become a topic of great concern to the international community. Sea level rise caused by climate change, flood disasters, biodiversity reduction, global famine, and other issues have begun to threaten the normal survival of human beings, and the climate problem needs to be solved urgently. While ensuring rapid economic development, in order to better control the total amount of greenhouse gas emissions, this paper, based on the theory of low-carbon economy, takes control of total carbon emissions for low-carbon economic development, as a perspective, and selects the optimization for the development of low-carbon economy. From the aspects of structural emission reduction technology and emission reduction, a carbon emission control optimization index system for low-carbon economic development based on total carbon emission control is constructed. Under the framework of the index system, construct an optimization model for the total amount of carbon emissions in a low-carbon economy and use the BP neural network model to seek the balance point between economic development, energy consumption, and carbon emissions so as to promote the rational and scientific development of the low-carbon economy. Planning and development. First of all, on the premise of maintaining the same economic growth rate, the optimization plan will reduce carbon emissions. Secondly, on the premise of keeping the cost of energy consumption unchanged, it is more reasonable to adjust the energy consumption structure. Taking the optimization plan as the suggestion for the development direction of the low-carbon economy, it provides scientific and feasible technical support for achieving the emission reduction target of reducing the unit greenhouse gas emission to 40%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气的藏鸟完成签到,获得积分10
4秒前
小洪俊熙完成签到,获得积分10
5秒前
小杨发布了新的文献求助10
6秒前
JUAN完成签到,获得积分10
7秒前
不信人间有白头完成签到 ,获得积分10
7秒前
明亮的代灵完成签到 ,获得积分10
7秒前
嗯哼完成签到 ,获得积分10
10秒前
liaomr完成签到 ,获得积分10
13秒前
哈哈完成签到 ,获得积分10
14秒前
14秒前
八八九九九1完成签到,获得积分10
14秒前
ZHZ完成签到,获得积分10
15秒前
OeO完成签到 ,获得积分10
16秒前
Xiaoming完成签到,获得积分0
16秒前
哈哈哈发布了新的文献求助10
18秒前
lang完成签到,获得积分10
18秒前
20秒前
忐忑的天真完成签到 ,获得积分10
20秒前
舒适数据线完成签到,获得积分10
21秒前
优雅的千雁完成签到,获得积分10
22秒前
zz完成签到 ,获得积分10
22秒前
没用的三轮完成签到,获得积分10
22秒前
zw完成签到,获得积分10
23秒前
啊哈啊哈额完成签到,获得积分10
24秒前
土豆淀粉完成签到 ,获得积分10
25秒前
26秒前
青黛完成签到 ,获得积分10
29秒前
爱吃蒸蛋完成签到,获得积分10
30秒前
mayberichard完成签到,获得积分10
30秒前
31秒前
火星上莛完成签到 ,获得积分10
32秒前
fanzi完成签到 ,获得积分10
32秒前
32秒前
chinh完成签到,获得积分10
35秒前
unfeeling8完成签到 ,获得积分10
37秒前
JUNE发布了新的文献求助30
37秒前
38秒前
花花2024完成签到 ,获得积分10
40秒前
胖胖橘完成签到 ,获得积分10
41秒前
独指蜗牛完成签到 ,获得积分10
43秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015