A high-accuracy calibration method for fusion systems of millimeter-wave radar and camera

校准 计算机视觉 人工智能 像素 雷达 计算机科学 极高频率 感兴趣区域 融合 雷达成像 图像融合 点(几何) 视野 遥感 图像(数学) 数学 电信 地质学 统计 哲学 语言学 几何学
作者
Xiyue Wang,Xinsheng Wang,Zhiquan Zhou
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (1): 015103-015103 被引量:6
标识
DOI:10.1088/1361-6501/ac95b4
摘要

Abstract Multi-sensor information fusion is widely used in the field of unmanned aerial vehicles obstacle avoidance flight, particularly in millimeter-wave (MMW) radar and camera fusion systems. Calibration accuracy plays a crucial role in fusion systems. The low-angle measurement accuracy of the MMW radar usually causes large calibration errors. To reduce calibration errors, a high-accuracy calibration method based on a region of interest (ROI) and an artificial potential field was proposed in this paper. The ROI was selected based on the initial calibration information and the MMW radar’s angle measurement error range from the image. An artificial potential field was established using the pixels of the ROI. Two moving points were set at the left and right ends of the ROI initially. The potential forces of the two moving points are different because the pixels of the obstacle and the background are different in the image. The two moving points were iteratively moved towards each other according to the force until their distance was less than the iteration step. The new calibration point is located in the middle of the final position of the two moving points. In contrast to the existing calibration methods, the proposed method avoids the limitations of low angle measurement accuracy by using image pixels. The experimental results show that the calibration errors decrease by 83.95% and 75.79%, which is significantly improved compared to the traditional methods and indicates the efficiency of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
day关闭了day文献求助
1秒前
Ivy完成签到,获得积分10
2秒前
2秒前
bkagyin应助1123采纳,获得10
3秒前
科研通AI6应助zhendezy采纳,获得30
3秒前
3秒前
4秒前
XXXX发布了新的文献求助10
4秒前
大气的代芙完成签到,获得积分10
4秒前
5秒前
斯文败类应助mumufan采纳,获得10
5秒前
谦虚低调接地气完成签到,获得积分10
5秒前
光头大叔完成签到 ,获得积分10
5秒前
paper完成签到 ,获得积分10
6秒前
6秒前
柔弱映梦发布了新的文献求助10
7秒前
田様应助会发光的喷火龙采纳,获得10
7秒前
7秒前
9秒前
昭浣应助科研通管家采纳,获得10
9秒前
斯文败类应助ymh采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
zhonghang2024应助科研通管家采纳,获得10
10秒前
zhonghang2024应助科研通管家采纳,获得10
10秒前
后来应助科研通管家采纳,获得80
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
北欧海盗完成签到,获得积分10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
昭浣应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642322
求助须知:如何正确求助?哪些是违规求助? 4758662
关于积分的说明 15017257
捐赠科研通 4800969
什么是DOI,文献DOI怎么找? 2566262
邀请新用户注册赠送积分活动 1524397
关于科研通互助平台的介绍 1483913