亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A high-accuracy calibration method for fusion systems of millimeter-wave radar and camera

校准 计算机视觉 人工智能 像素 雷达 计算机科学 极高频率 感兴趣区域 融合 雷达成像 图像融合 点(几何) 视野 遥感 图像(数学) 数学 电信 地质学 统计 哲学 语言学 几何学
作者
Xiyue Wang,Xinsheng Wang,Zhiquan Zhou
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (1): 015103-015103 被引量:6
标识
DOI:10.1088/1361-6501/ac95b4
摘要

Abstract Multi-sensor information fusion is widely used in the field of unmanned aerial vehicles obstacle avoidance flight, particularly in millimeter-wave (MMW) radar and camera fusion systems. Calibration accuracy plays a crucial role in fusion systems. The low-angle measurement accuracy of the MMW radar usually causes large calibration errors. To reduce calibration errors, a high-accuracy calibration method based on a region of interest (ROI) and an artificial potential field was proposed in this paper. The ROI was selected based on the initial calibration information and the MMW radar’s angle measurement error range from the image. An artificial potential field was established using the pixels of the ROI. Two moving points were set at the left and right ends of the ROI initially. The potential forces of the two moving points are different because the pixels of the obstacle and the background are different in the image. The two moving points were iteratively moved towards each other according to the force until their distance was less than the iteration step. The new calibration point is located in the middle of the final position of the two moving points. In contrast to the existing calibration methods, the proposed method avoids the limitations of low angle measurement accuracy by using image pixels. The experimental results show that the calibration errors decrease by 83.95% and 75.79%, which is significantly improved compared to the traditional methods and indicates the efficiency of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jzhang发布了新的文献求助10
1秒前
11秒前
ldysaber完成签到,获得积分0
14秒前
南桥发布了新的文献求助10
16秒前
李健的小迷弟应助Jzhang采纳,获得10
19秒前
希望天下0贩的0应助南桥采纳,获得10
22秒前
wwx发布了新的文献求助10
25秒前
美罗培南完成签到,获得积分10
33秒前
等待秀发布了新的文献求助10
39秒前
在水一方应助leafye采纳,获得10
55秒前
冷帅完成签到,获得积分10
57秒前
脑洞疼应助科研通管家采纳,获得10
1分钟前
无花果应助等待秀采纳,获得10
1分钟前
hiaoyi完成签到 ,获得积分0
1分钟前
俭朴夜雪完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ala完成签到,获得积分10
1分钟前
英俊的铭应助努力的小朱采纳,获得10
1分钟前
1分钟前
1分钟前
等待秀发布了新的文献求助10
1分钟前
leafye发布了新的文献求助10
1分钟前
情怀应助罗红豆采纳,获得10
2分钟前
沿途南行发布了新的文献求助10
2分钟前
小蘑菇应助等待秀采纳,获得10
2分钟前
阵雨关注了科研通微信公众号
2分钟前
2分钟前
timick完成签到,获得积分10
2分钟前
等待秀发布了新的文献求助10
2分钟前
2分钟前
2分钟前
乐乐发布了新的文献求助10
2分钟前
2分钟前
阵雨发布了新的文献求助10
2分钟前
千年主治发布了新的文献求助20
2分钟前
2分钟前
MM完成签到,获得积分10
2分钟前
2分钟前
xwc发布了新的文献求助10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466773
求助须知:如何正确求助?哪些是违规求助? 3059575
关于积分的说明 9067090
捐赠科研通 2750043
什么是DOI,文献DOI怎么找? 1508917
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896