A high-accuracy calibration method for fusion systems of millimeter-wave radar and camera

校准 计算机视觉 人工智能 像素 雷达 计算机科学 极高频率 感兴趣区域 融合 雷达成像 图像融合 点(几何) 视野 遥感 图像(数学) 数学 电信 地质学 统计 哲学 语言学 几何学
作者
Xiyue Wang,Xinsheng Wang,Zhiquan Zhou
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (1): 015103-015103 被引量:6
标识
DOI:10.1088/1361-6501/ac95b4
摘要

Abstract Multi-sensor information fusion is widely used in the field of unmanned aerial vehicles obstacle avoidance flight, particularly in millimeter-wave (MMW) radar and camera fusion systems. Calibration accuracy plays a crucial role in fusion systems. The low-angle measurement accuracy of the MMW radar usually causes large calibration errors. To reduce calibration errors, a high-accuracy calibration method based on a region of interest (ROI) and an artificial potential field was proposed in this paper. The ROI was selected based on the initial calibration information and the MMW radar’s angle measurement error range from the image. An artificial potential field was established using the pixels of the ROI. Two moving points were set at the left and right ends of the ROI initially. The potential forces of the two moving points are different because the pixels of the obstacle and the background are different in the image. The two moving points were iteratively moved towards each other according to the force until their distance was less than the iteration step. The new calibration point is located in the middle of the final position of the two moving points. In contrast to the existing calibration methods, the proposed method avoids the limitations of low angle measurement accuracy by using image pixels. The experimental results show that the calibration errors decrease by 83.95% and 75.79%, which is significantly improved compared to the traditional methods and indicates the efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助jy采纳,获得10
1秒前
1秒前
1秒前
浮游应助lulu采纳,获得10
3秒前
3秒前
实验室据好到爆完成签到,获得积分10
3秒前
3秒前
4秒前
小太阳发布了新的文献求助10
4秒前
GYT完成签到,获得积分20
4秒前
YY完成签到,获得积分10
5秒前
7秒前
丘比特应助甜甜若冰采纳,获得10
7秒前
GYT发布了新的文献求助10
7秒前
8秒前
晚意完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助150
8秒前
Owen应助Narcissus153采纳,获得10
9秒前
9秒前
开心果发布了新的文献求助10
10秒前
论文侠发布了新的文献求助10
10秒前
11秒前
ding应助严明采纳,获得10
11秒前
XxxxxxENT完成签到,获得积分10
11秒前
大个应助科研通管家采纳,获得10
12秒前
哈哈王子发布了新的文献求助10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
12秒前
xzy998应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899127
求助须知:如何正确求助?哪些是违规求助? 4179490
关于积分的说明 12975214
捐赠科研通 3943544
什么是DOI,文献DOI怎么找? 2163400
邀请新用户注册赠送积分活动 1181711
关于科研通互助平台的介绍 1087387