解算器
拉丁超立方体抽样
人工神经网络
超立方体
采样(信号处理)
网格
扩散
偏微分方程
应用数学
计算机科学
边值问题
算法
数学
数学优化
数学分析
物理
人工智能
并行计算
蒙特卡罗方法
几何学
统计
热力学
滤波器(信号处理)
计算机视觉
作者
Xuankang Mou,Qian Fang,Shiben Li
出处
期刊:Research Square - Research Square
日期:2022-09-16
被引量:1
标识
DOI:10.21203/rs.3.rs-2059725/v1
摘要
Abstract We developed a hybrid solver based on physics-informed neural networks and a mixture of grid and Latin hypercube sampling to solve forward and backward modified diffusion equations. We optimized the parameters in the neural networks by considering the squeeze boundary condition and the parameter in the mixed data sampling by adjusting the mixture coefficient. Then,we used a given modified diffusion equation as an example to demonstrate the efficiency of the hybrid solver for forward and backward problems. The neural network results were compared with the numerical solutions, and good agreement with high precision was observed. This hybrid neural network solver can be generalized to other partial differential equations.
科研通智能强力驱动
Strongly Powered by AbleSci AI