DFT and AMPS-1D simulation analysis of all-perovskite solar cells based on CsPbI3/FAPbI3 bilayer structure

钙钛矿(结构) 材料科学 能量转换效率 带隙 双层 光电子学 异质结 量子点 钙钛矿太阳能电池 太阳能电池 开路电压 量子效率 化学 电压 结晶学 电气工程 工程类 生物化学
作者
Ali Hajjiah,Mohammed Gamal,Ishac Kandas,Nima E. Gorji,Nader Shehata
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier]
卷期号:248: 112026-112026 被引量:33
标识
DOI:10.1016/j.solmat.2022.112026
摘要

Very recently, perovskite solar cells (PSCs) have been proposed with both new device structure and materials to replace the conventional Methyl Ammonium-based structures in order to develop cells with higher operational stability. All-perovskite solar cells are the most emerging class of organic-inorganic PSCs which combine the photogeneration and absorption capability of two different perovskite materials to ensure both photo conversion performance and device operational stability. This simulation work aims to develop a systematic investigation of an all-perovskite solar cell structure made of CsPbI3/FAPbI3 heterojunctions using wxAMPS-1D platform supported with Density Functional Theory (DFT) simulations to analyze the band structure of both CsPbI3 and FAPbI3 materials. The quantum efficiency, device characteristics, and degradation trend have been optimized against the thickness of perovskite layers. The optimum thicknesses are obtained to be 200 nm for CsPbI3 layer at an assumed thickness range of∼300 nm for FAPbI3 as stated in different literature, 30 nm for TiO2 electron transporting layer, and 80 nm for Spiro-OMeTAD hole transporting layer. The optimized CsPbI3/FAPbI3 bilayer all-perovskite solar cell results in 19.94% efficiency (PCE), short-circuit current density (Jsc = 24.5 mA/cm2), and open circuit voltage (Voc = 1.1 V), and a fill factor (FF) = 74%. The bilayer structure (CsPbI3/FAPbI3) shows 20% improvement in external quantum efficiency (in visible range), compared to the cell made of single CsPbI3 or FAPbI3 layer. Moreover, the degradation analysis shows that increasing the mid-gap defect density (in both layers) up to 1015 cm−3 was detrimental to device performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
面包不蘸酱完成签到,获得积分10
刚刚
刚刚
勤快浣熊完成签到 ,获得积分10
1秒前
yu完成签到,获得积分10
1秒前
Yang22完成签到,获得积分10
1秒前
笨笨的鬼神完成签到,获得积分10
2秒前
3秒前
3秒前
ANdrey发布了新的文献求助10
3秒前
张成完成签到,获得积分10
4秒前
领导范儿应助叶祥采纳,获得10
4秒前
烂漫剑发布了新的文献求助10
4秒前
iNk应助快乐觅露采纳,获得10
5秒前
聪明摩托发布了新的文献求助10
5秒前
皮皮虾完成签到,获得积分10
5秒前
5秒前
舒昀完成签到,获得积分10
6秒前
scichu发布了新的文献求助10
7秒前
7秒前
setid完成签到 ,获得积分10
8秒前
9秒前
bkagyin应助可爱非笑采纳,获得10
9秒前
酷炫大树完成签到,获得积分10
9秒前
英俊的铭应助yu采纳,获得10
10秒前
Jasper应助啊棕采纳,获得10
10秒前
11秒前
所所应助酒精过敏采纳,获得10
11秒前
FG发布了新的文献求助30
11秒前
自信白梦完成签到,获得积分20
11秒前
科研通AI5应助棉花糖采纳,获得10
11秒前
丘比特应助方董采纳,获得10
12秒前
酱子完成签到 ,获得积分10
12秒前
渡梦不渡身完成签到,获得积分10
13秒前
夏天来了发布了新的文献求助20
13秒前
沿途南行发布了新的文献求助10
13秒前
lani完成签到 ,获得积分10
14秒前
蜜桃吐司完成签到 ,获得积分10
14秒前
乐正成危完成签到 ,获得积分10
14秒前
大个应助Calvin采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563901
求助须知:如何正确求助?哪些是违规求助? 3137137
关于积分的说明 9421201
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559912
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717197