Current advances and future perspectives of image fusion: A comprehensive review

图像融合 计算机科学 模式 多光谱图像 人工智能 融合 图像处理 分类 计算机视觉 图像(数学) 社会科学 语言学 哲学 社会学
作者
Shahid Karim,Geng Tong,Jinyang Li,Akeel Qadir,Umar Farooq,Yiting Yu
出处
期刊:Information Fusion [Elsevier]
卷期号:90: 185-217 被引量:104
标识
DOI:10.1016/j.inffus.2022.09.019
摘要

• The image fusion methods are comprehensively reviewed, and recent developments of DL are elaborated. • The image fusion applications are briefly discussed. • The imaging technologies are summarized for image fusion. • The spectral and polarized image fusion is broadly conferred. • Future perspectives are comprehensively discussed. Multiple imaging modalities can be combined to provide more information about the real world than a single modality alone. Infrared images discriminate targets with respect to their thermal radiation differences, and visible images are promising for texture details. On the other hand, polarized images deliver intensity and polarization information, and multispectral images dispense the spatial, spectral, and temporal information depending upon the environment. Different sensors provide images with different characteristics, such as type of degradation, important features, textural attributes, etc. Several stimulating tasks have been explored in the last decades based on algorithms, performance assessments, processing techniques, and prospective applications. However, most of the reviews and surveys have not properly addressed the issues of additional possibilities of imaging fusion. The primary goal of this paper is to give a thorough overview of image fusion approaches, including associated background and current breakthroughs. We introduce image fusion and categorize the methods based on conventional image processing, deep learning (DL) architectures, and fusion scenarios. Further, we emphasize the recent DL developments in various image fusion scenarios. However, there are still several difficulties to overcome, including developing more advanced algorithms to support more dependable and real-time practical applications, discussed in future perspectives. This study can assist researchers in coping with multiple imaging modalities, recent fusion developments, and future perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
于嗣濠完成签到 ,获得积分10
刚刚
36456657应助CC采纳,获得10
刚刚
优雅山柏发布了新的文献求助10
1秒前
Jacky完成签到,获得积分10
1秒前
脑洞疼应助无情的白桃采纳,获得10
1秒前
mm发布了新的文献求助10
1秒前
2秒前
2秒前
zoko发布了新的文献求助10
2秒前
2秒前
曾经的臻发布了新的文献求助10
2秒前
华仔应助S1mple_gentleman采纳,获得10
2秒前
科研通AI5应助CC采纳,获得10
2秒前
2秒前
3秒前
3秒前
张静静完成签到,获得积分10
4秒前
4秒前
震666发布了新的文献求助30
4秒前
MADKAI发布了新的文献求助10
4秒前
4秒前
117发布了新的文献求助10
4秒前
5秒前
5秒前
酶没美镁完成签到,获得积分10
5秒前
小二郎应助Rui采纳,获得10
5秒前
Libra完成签到,获得积分10
6秒前
雪儿发布了新的文献求助30
6秒前
无悔呀发布了新的文献求助10
6秒前
小巧的可仁完成签到 ,获得积分10
6秒前
6秒前
zhao完成签到,获得积分10
7秒前
masu发布了新的文献求助10
7秒前
冷酷尔琴发布了新的文献求助10
8秒前
Ll发布了新的文献求助10
8秒前
优雅山柏完成签到,获得积分10
8秒前
XinyiZhang发布了新的文献求助10
8秒前
小蘑菇应助yangyang采纳,获得10
8秒前
慕青应助欢欢采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740