Current advances and future perspectives of image fusion: A comprehensive review

图像融合 计算机科学 模式 多光谱图像 人工智能 融合 图像处理 分类 计算机视觉 图像(数学) 社会科学 语言学 哲学 社会学
作者
Shahid Karim,Geng Tong,Jinyang Li,Akeel Qadir,Umar Farooq,Yiting Yu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:90: 185-217 被引量:122
标识
DOI:10.1016/j.inffus.2022.09.019
摘要

• The image fusion methods are comprehensively reviewed, and recent developments of DL are elaborated. • The image fusion applications are briefly discussed. • The imaging technologies are summarized for image fusion. • The spectral and polarized image fusion is broadly conferred. • Future perspectives are comprehensively discussed. Multiple imaging modalities can be combined to provide more information about the real world than a single modality alone. Infrared images discriminate targets with respect to their thermal radiation differences, and visible images are promising for texture details. On the other hand, polarized images deliver intensity and polarization information, and multispectral images dispense the spatial, spectral, and temporal information depending upon the environment. Different sensors provide images with different characteristics, such as type of degradation, important features, textural attributes, etc. Several stimulating tasks have been explored in the last decades based on algorithms, performance assessments, processing techniques, and prospective applications. However, most of the reviews and surveys have not properly addressed the issues of additional possibilities of imaging fusion. The primary goal of this paper is to give a thorough overview of image fusion approaches, including associated background and current breakthroughs. We introduce image fusion and categorize the methods based on conventional image processing, deep learning (DL) architectures, and fusion scenarios. Further, we emphasize the recent DL developments in various image fusion scenarios. However, there are still several difficulties to overcome, including developing more advanced algorithms to support more dependable and real-time practical applications, discussed in future perspectives. This study can assist researchers in coping with multiple imaging modalities, recent fusion developments, and future perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang发布了新的文献求助10
1秒前
哎哟很烦完成签到,获得积分10
1秒前
情怀应助秦宇麒采纳,获得10
3秒前
weddcf发布了新的文献求助20
4秒前
小二郎应助seem233采纳,获得10
4秒前
毅诚菌完成签到,获得积分10
6秒前
迷路羽毛发布了新的文献求助10
6秒前
7秒前
江浔卿完成签到 ,获得积分10
9秒前
yyy完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
yyy发布了新的文献求助10
12秒前
12秒前
大胆胡萝卜完成签到,获得积分10
13秒前
Lucas应助十七采纳,获得10
13秒前
14秒前
drgaoying发布了新的文献求助10
14秒前
绿泡芙完成签到 ,获得积分10
14秒前
14秒前
15秒前
宁静致远完成签到,获得积分10
16秒前
猪肉水饺发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
唐焱杰完成签到,获得积分10
17秒前
万能图书馆应助俭朴青烟采纳,获得10
17秒前
汤朝雪发布了新的文献求助20
18秒前
Ava应助drgaoying采纳,获得10
19秒前
22秒前
丘比特应助ggyy采纳,获得10
22秒前
十月发布了新的文献求助20
22秒前
23秒前
12369发布了新的文献求助10
26秒前
秦宇麒发布了新的文献求助10
27秒前
英俊的铭应助Silverbrg采纳,获得10
27秒前
27秒前
白芷发布了新的文献求助10
27秒前
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010343
求助须知:如何正确求助?哪些是违规求助? 3550209
关于积分的说明 11305256
捐赠科研通 3284663
什么是DOI,文献DOI怎么找? 1810786
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451