Current advances and future perspectives of image fusion: A comprehensive review

图像融合 计算机科学 模式 多光谱图像 人工智能 融合 图像处理 分类 计算机视觉 图像(数学) 社会科学 语言学 哲学 社会学
作者
Shahid Karim,Geng Tong,Jinyang Li,Akeel Qadir,Umar Farooq,Yiting Yu
出处
期刊:Information Fusion [Elsevier]
卷期号:90: 185-217 被引量:150
标识
DOI:10.1016/j.inffus.2022.09.019
摘要

• The image fusion methods are comprehensively reviewed, and recent developments of DL are elaborated. • The image fusion applications are briefly discussed. • The imaging technologies are summarized for image fusion. • The spectral and polarized image fusion is broadly conferred. • Future perspectives are comprehensively discussed. Multiple imaging modalities can be combined to provide more information about the real world than a single modality alone. Infrared images discriminate targets with respect to their thermal radiation differences, and visible images are promising for texture details. On the other hand, polarized images deliver intensity and polarization information, and multispectral images dispense the spatial, spectral, and temporal information depending upon the environment. Different sensors provide images with different characteristics, such as type of degradation, important features, textural attributes, etc. Several stimulating tasks have been explored in the last decades based on algorithms, performance assessments, processing techniques, and prospective applications. However, most of the reviews and surveys have not properly addressed the issues of additional possibilities of imaging fusion. The primary goal of this paper is to give a thorough overview of image fusion approaches, including associated background and current breakthroughs. We introduce image fusion and categorize the methods based on conventional image processing, deep learning (DL) architectures, and fusion scenarios. Further, we emphasize the recent DL developments in various image fusion scenarios. However, there are still several difficulties to overcome, including developing more advanced algorithms to support more dependable and real-time practical applications, discussed in future perspectives. This study can assist researchers in coping with multiple imaging modalities, recent fusion developments, and future perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
汉堡包应助SUNYAOSUNYAO采纳,获得10
刚刚
健忘冷风发布了新的文献求助10
1秒前
Jasper应助啦啦啦采纳,获得10
1秒前
孟辰凡发布了新的文献求助10
1秒前
你嵙这个期刊没买举报REN求助涉嫌违规
1秒前
1秒前
Orange应助轻松戎采纳,获得10
2秒前
烊烊完成签到 ,获得积分10
2秒前
A小柴发布了新的文献求助10
2秒前
里里完成签到,获得积分10
3秒前
3秒前
3秒前
南山完成签到,获得积分10
4秒前
纯真的半山完成签到,获得积分10
4秒前
顺顺完成签到,获得积分10
4秒前
Monologue完成签到 ,获得积分10
4秒前
Owen应助xh采纳,获得10
5秒前
一万完成签到,获得积分10
5秒前
5秒前
caoyuya123完成签到 ,获得积分10
5秒前
萍子完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
大胆的如凡完成签到,获得积分10
6秒前
脑洞疼应助黑豆子采纳,获得10
7秒前
7秒前
领导范儿应助白英采纳,获得10
7秒前
7秒前
情怀应助清脆的代芹采纳,获得10
8秒前
8秒前
xutong de完成签到,获得积分10
8秒前
完美世界应助WN采纳,获得30
8秒前
Shannon完成签到,获得积分10
8秒前
Jared应助大神牛猪羊采纳,获得10
8秒前
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661387
求助须知:如何正确求助?哪些是违规求助? 4838678
关于积分的说明 15095847
捐赠科研通 4820153
什么是DOI,文献DOI怎么找? 2579773
邀请新用户注册赠送积分活动 1534034
关于科研通互助平台的介绍 1492769