Driving Aggressively or Conservatively? Investigating the Effects of Automated Vehicle Interaction Type and Road Event on Drivers’ Trust and Preferred Driving Style

人气 偏爱 行人 事件(粒子物理) 驾驶模拟器 计算机科学 自动化 计算机安全 应用心理学 心理学 社会心理学 模拟 运输工程 工程类 机械工程 物理 经济 微观经济学 量子力学
作者
Yuni Lee,Miaomiao Dong,Vidya Krishnamoorthy,Kumar Akash,Teruhisa Misu,Zhaobo Zheng,Gaojian Huang
出处
期刊:Human Factors [SAGE]
卷期号:: 001872082311811-001872082311811 被引量:3
标识
DOI:10.1177/00187208231181199
摘要

This study aimed to investigate the impact of automated vehicle (AV) interaction mode on drivers' trust and preferred driving styles in response to pedestrian- and traffic-related road events.The rising popularity of AVs highlights the need for a deeper understanding of the factors that influence trust in AV. Trust is a crucial element, particularly because current AVs are only partially automated and may require manual takeover; miscalibrated trust could have an adverse effect on safe driver-vehicle interaction. However, before attempting to calibrate trust, it is vital to comprehend the factors that contribute to trust in automation.Thirty-six individuals participated in the experiment. Driving scenarios incorporated adaptive SAE Level 2 AV algorithms, driven by participants' event-based trust in AVs and preferences for AV driving styles. The study measured participants' trust, preferences, and the number of takeover behaviors.Higher levels of trust and preference for more aggressive AV driving styles were found in response to pedestrian-related events compared to traffic-related events. Furthermore, drivers preferred the trust-based adaptive mode and had fewer takeover behaviors than the preference-based adaptive and fixed modes. Lastly, participants with higher trust in AVs favored more aggressive driving styles and made fewer takeover attempts.Adaptive AV interaction modes that depend on real-time event-based trust and event types may represent a promising approach to human-automation interaction in vehicles.Findings from this study can support future driver- and situation-aware AVs that can adapt their behavior for improved driver-vehicle interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
时光行者发布了新的文献求助30
2秒前
pphe完成签到,获得积分20
3秒前
完美世界应助agyh采纳,获得10
3秒前
坦率白竹发布了新的文献求助10
3秒前
3秒前
任性的惜珊关注了科研通微信公众号
3秒前
4秒前
lizz完成签到 ,获得积分20
4秒前
zzzzz完成签到,获得积分10
4秒前
慢慢完成签到,获得积分10
4秒前
5秒前
5秒前
CodeCraft应助fyfly采纳,获得10
5秒前
哦哦哦完成签到 ,获得积分10
6秒前
阳光曼冬完成签到,获得积分20
6秒前
酷波er应助昨天采纳,获得10
6秒前
ggw完成签到,获得积分10
6秒前
meng完成签到 ,获得积分10
6秒前
机灵笑萍完成签到,获得积分10
7秒前
加菲丰丰应助碧蓝绮菱采纳,获得20
8秒前
萌兰134发布了新的文献求助10
8秒前
jason完成签到 ,获得积分10
8秒前
寒冷寻桃完成签到 ,获得积分10
8秒前
Mercurius完成签到,获得积分10
8秒前
rosy完成签到,获得积分10
9秒前
9秒前
9秒前
振江发布了新的文献求助10
9秒前
10秒前
啊民完成签到 ,获得积分10
10秒前
fei完成签到,获得积分10
10秒前
lllxbl完成签到,获得积分10
10秒前
11秒前
zzzzz发布了新的文献求助10
11秒前
SHJ完成签到,获得积分10
11秒前
shinkai发布了新的文献求助10
11秒前
所所应助llfire采纳,获得10
11秒前
11秒前
工兵小蚂蚁完成签到,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123361
求助须知:如何正确求助?哪些是违规求助? 2773880
关于积分的说明 7719958
捐赠科研通 2429599
什么是DOI,文献DOI怎么找? 1290357
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251