亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Network-Based Comprehensive Parotid Gland Tumor Detection

腮腺 计算机科学 人工智能 病理 医学
作者
Kubilay Muhammed Sünnetci,Esat Kaba,Fatma Beyazal Çeliker,Ahmet Alkan
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (1): 157-167 被引量:69
标识
DOI:10.1016/j.acra.2023.04.028
摘要

Rationale and Objectives Salivary gland tumors constitute 2%-6% of all head and neck tumors and are most common in the parotid gland. Magnetic resonance (MR) imaging is the most sensitive imaging modality for diagnosis. Tumor type, localization, and relationship with surrounding structures are important factors for treatment. Therefore, parotid gland tumor segmentation is important. Specialists widely use manual segmentation in diagnosis and treatment. However, considering the development of artificial intelligence-based models today, it is seen that artificial intelligence-based automatic segmentation models can be used instead of manual segmentation, which is a time-consuming technique. Therefore, we segmented parotid gland tumor (PGT) using deep learning-based architectures in the paper. Materials and Methods The dataset used in the study includes 102 T1-w, 102 contrast-enhanced T1-w (T1C-w), and 102 T2-w MR images. After cropping the raw and manually segmented images by experts, we obtained the masks of these images. After standardizing the image sizes, we split these images into approximately 80% training set and 20% test set. Hereabouts, we trained six models for these images using ResNet18 and Xception-based DeepLab v3+. We prepared a user-friendly Graphical User Interface application that includes each of these models. Results From the results, the accuracy and weighted Intersection over Union values of the ResNet18-based DeepLab v3+ architecture trained for T1C-w, which is the most successful model in the study, are equal to 0.96153 and 0.92601, respectively. Regarding the results and the literature, it can be seen that the proposed system is competitive in terms of both using MR images and training the models independently for T1-w, T1C-w, and T2-w. Expressing that PGT is usually segmented manually in the literature, we predict that our study can contribute significantly to the literature. Conclusion In this study, we prepared and presented a software application that can be easily used by users for automatic PGT segmentation. In addition to predicting the reduction of costs and workload through the study, we developed models with meaningful performance metrics according to the literature. Salivary gland tumors constitute 2%-6% of all head and neck tumors and are most common in the parotid gland. Magnetic resonance (MR) imaging is the most sensitive imaging modality for diagnosis. Tumor type, localization, and relationship with surrounding structures are important factors for treatment. Therefore, parotid gland tumor segmentation is important. Specialists widely use manual segmentation in diagnosis and treatment. However, considering the development of artificial intelligence-based models today, it is seen that artificial intelligence-based automatic segmentation models can be used instead of manual segmentation, which is a time-consuming technique. Therefore, we segmented parotid gland tumor (PGT) using deep learning-based architectures in the paper. The dataset used in the study includes 102 T1-w, 102 contrast-enhanced T1-w (T1C-w), and 102 T2-w MR images. After cropping the raw and manually segmented images by experts, we obtained the masks of these images. After standardizing the image sizes, we split these images into approximately 80% training set and 20% test set. Hereabouts, we trained six models for these images using ResNet18 and Xception-based DeepLab v3+. We prepared a user-friendly Graphical User Interface application that includes each of these models. From the results, the accuracy and weighted Intersection over Union values of the ResNet18-based DeepLab v3+ architecture trained for T1C-w, which is the most successful model in the study, are equal to 0.96153 and 0.92601, respectively. Regarding the results and the literature, it can be seen that the proposed system is competitive in terms of both using MR images and training the models independently for T1-w, T1C-w, and T2-w. Expressing that PGT is usually segmented manually in the literature, we predict that our study can contribute significantly to the literature. In this study, we prepared and presented a software application that can be easily used by users for automatic PGT segmentation. In addition to predicting the reduction of costs and workload through the study, we developed models with meaningful performance metrics according to the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领导范儿应助阿花阿花采纳,获得10
3秒前
8秒前
番茄鱼完成签到 ,获得积分10
9秒前
壹壹完成签到 ,获得积分10
9秒前
21秒前
zzgpku完成签到,获得积分0
21秒前
uupp完成签到,获得积分10
22秒前
25秒前
Asuka完成签到 ,获得积分10
25秒前
26秒前
~静完成签到,获得积分10
34秒前
35秒前
Synan完成签到,获得积分10
37秒前
HY完成签到 ,获得积分10
38秒前
47秒前
52秒前
小蘑菇完成签到 ,获得积分10
53秒前
Hello应助大方的契采纳,获得10
55秒前
PetrichorF完成签到 ,获得积分10
55秒前
57秒前
57秒前
1分钟前
芋泥芝士果茶完成签到,获得积分10
1分钟前
yaoli0823发布了新的文献求助10
1分钟前
修利发布了新的文献求助10
1分钟前
Dreamchaser完成签到,获得积分10
1分钟前
Rory完成签到 ,获得积分10
1分钟前
李爱国应助yaoli0823采纳,获得10
1分钟前
1分钟前
1分钟前
奋斗小馒头关注了科研通微信公众号
1分钟前
1分钟前
鱼新碟完成签到,获得积分10
1分钟前
蓝色的鱼完成签到,获得积分10
1分钟前
yyyyh发布了新的文献求助10
1分钟前
修利完成签到,获得积分10
1分钟前
孙宝怡完成签到 ,获得积分10
1分钟前
FEMTO完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454735
求助须知:如何正确求助?哪些是违规求助? 4562104
关于积分的说明 14284726
捐赠科研通 4485945
什么是DOI,文献DOI怎么找? 2457157
邀请新用户注册赠送积分活动 1447737
关于科研通互助平台的介绍 1422973