Clinical concept and relation extraction using prompt-based machine reading comprehension

概化理论 关系抽取 计算机科学 人工智能 机器学习 水准点(测量) 深度学习 变压器 学习迁移 自然语言处理 信息抽取 统计 数学 地理 大地测量学 电压 物理 量子力学
作者
Peng Cheng,Xi Yang,Zehao Yu,Jiang Bian,William R. Hogan,Yonghui Wu
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:30 (9): 1486-1493 被引量:13
标识
DOI:10.1093/jamia/ocad107
摘要

Abstract Objective To develop a natural language processing system that solves both clinical concept extraction and relation extraction in a unified prompt-based machine reading comprehension (MRC) architecture with good generalizability for cross-institution applications. Methods We formulate both clinical concept extraction and relation extraction using a unified prompt-based MRC architecture and explore state-of-the-art transformer models. We compare our MRC models with existing deep learning models for concept extraction and end-to-end relation extraction using 2 benchmark datasets developed by the 2018 National NLP Clinical Challenges (n2c2) challenge (medications and adverse drug events) and the 2022 n2c2 challenge (relations of social determinants of health [SDoH]). We also evaluate the transfer learning ability of the proposed MRC models in a cross-institution setting. We perform error analyses and examine how different prompting strategies affect the performance of MRC models. Results and Conclusion The proposed MRC models achieve state-of-the-art performance for clinical concept and relation extraction on the 2 benchmark datasets, outperforming previous non-MRC transformer models. GatorTron-MRC achieves the best strict and lenient F1-scores for concept extraction, outperforming previous deep learning models on the 2 datasets by 1%–3% and 0.7%–1.3%, respectively. For end-to-end relation extraction, GatorTron-MRC and BERT-MIMIC-MRC achieve the best F1-scores, outperforming previous deep learning models by 0.9%–2.4% and 10%–11%, respectively. For cross-institution evaluation, GatorTron-MRC outperforms traditional GatorTron by 6.4% and 16% for the 2 datasets, respectively. The proposed method is better at handling nested/overlapped concepts, extracting relations, and has good portability for cross-institute applications. Our clinical MRC package is publicly available at https://github.com/uf-hobi-informatics-lab/ClinicalTransformerMRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
困困困完成签到 ,获得积分10
2秒前
2秒前
2秒前
大泡泡给大泡泡的求助进行了留言
2秒前
2秒前
上神完成签到 ,获得积分10
2秒前
4秒前
5秒前
万能图书馆应助研友_Z6k7B8采纳,获得10
5秒前
桐桐应助lixuerui采纳,获得10
6秒前
Candice应助ABS采纳,获得10
6秒前
上神关注了科研通微信公众号
6秒前
su完成签到,获得积分10
6秒前
打打应助周周采纳,获得30
7秒前
7秒前
嘻嘻嘻发布了新的文献求助10
8秒前
所所应助残月下的樱花采纳,获得10
8秒前
DDD完成签到,获得积分10
9秒前
ccm应助图们江采纳,获得10
9秒前
FashionBoy应助图们江采纳,获得10
9秒前
迷人啤酒完成签到,获得积分10
9秒前
星辰大海应助伊可采纳,获得10
11秒前
WZX关注了科研通微信公众号
11秒前
han发布了新的文献求助10
12秒前
LHC完成签到,获得积分10
12秒前
zbc_完成签到,获得积分10
14秒前
頑皮燕姿完成签到,获得积分10
15秒前
顾矜应助逛该在采纳,获得10
17秒前
18秒前
吴静茹发布了新的文献求助10
18秒前
好好写论文完成签到,获得积分10
19秒前
五十不同完成签到 ,获得积分10
19秒前
20秒前
华仔应助俊秀的念烟采纳,获得10
21秒前
伊可发布了新的文献求助10
23秒前
Lucas应助Fine采纳,获得10
24秒前
在水一方应助贺岚采纳,获得10
24秒前
25秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264956
求助须知:如何正确求助?哪些是违规求助? 2904855
关于积分的说明 8331877
捐赠科研通 2575269
什么是DOI,文献DOI怎么找? 1399722
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633353