A Comparison Study of the Electrocatalytic Sulfur Reduction Activity on Heteroatom‐Doped Graphene for Li–S Battery

杂原子 石墨烯 硫黄 电池(电) 催化作用 兴奋剂 电解质 钝化 锂硫电池 电催化剂 二硫化钼 化学工程 无机化学 碳纤维 化学 材料科学 电化学 电极 纳米技术 有机化学 复合数 光电子学 物理化学 戒指(化学) 图层(电子) 物理 功率(物理) 量子力学 复合材料 冶金 工程类
作者
Wei Zhang,Yifan Li,Haifeng Lv,Shuai Xie,Jiawen Zhu,Junjie Xu,Hongchang Jin,Xianghua Kong,Song Jin,Haiyan Wang,Xiaojun Wu,Hengxing Ji
出处
期刊:Small structures [Wiley]
卷期号:4 (3) 被引量:51
标识
DOI:10.1002/sstr.202200244
摘要

The complicated multielectron and multiphase electrocatalytic sulfur reduction reaction (SRR) occurring in the Li–S battery is demonstrated, which strongly influences the performances of this battery chemistry. Effective candidates for SRR are often based on heteroatom‐doped carbon‐based electrocatalysts. However, the electrocatalytic sulfur reduction activity of these catalysts is so far insufficiently explored. Herein, a series of graphene doped with nonmetal elements (nitrogen, phosphorus, and sulfur) are designed and synthesized. It is shown that nitrogen‐doped graphene has a superior SRR catalytic activity with highest electrochemical reversibility and best electrochemical kinetics for the liquid–solid two‐phase conversion from long‐chain soluble Li 2 S x (4 ≤ x ≤ 8) and the solid‐state Li 2 S 2 to Li 2 S conversion. The considerably improved kinetics of the liquid–solid and solid–solid phases conversion reduces the continued accumulation of lithium polysulfides in electrolyte and the passivation of the electrode, thus resulting in a significant improvement in electrochemical performance of Li–S cells. Density‐functional theory calculations demonstrates that the highest SRR performance of N/G is originated from the strongest adsorption of the sulfur species and lowest energy barriers for Li 2 S decomposition among three doped graphene samples. This study is believed to guide the design of efficient electrocatalysts to exceed the performance of the benchmark for Li–S battery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的稚晴完成签到,获得积分20
刚刚
进击的PhD完成签到,获得积分10
1秒前
2秒前
单纯无声完成签到 ,获得积分10
2秒前
4秒前
西西弗斯完成签到,获得积分10
6秒前
李卓航发布了新的文献求助10
8秒前
领导范儿应助甜野采纳,获得10
8秒前
8秒前
10秒前
12秒前
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
好好应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
好好应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
14秒前
好好应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
dew应助科研通管家采纳,获得50
14秒前
FU发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716