体内
信使核糖核酸
体外
荧光素酶
离体
转染
分子生物学
化学
生物物理学
生物技术
生物
生物化学
基因
作者
Rakan El‐Mayta,Marshall S. Padilla,Margaret M. Billingsley,Xuexiang Han,Michael J. Mitchell
摘要
Lipid nanoparticles (LNPs) have attracted widespread attention recently with the successful development of the COVID-19 mRNA vaccines by Moderna and Pfizer/BioNTech. These vaccines have demonstrated the efficacy of mRNA-LNP therapeutics and opened the door for future clinical applications. In mRNA-LNP systems, the LNPs serve as delivery platforms that protect the mRNA cargo from degradation by nucleases and mediate their intracellular delivery. The LNPs are typically composed of four components: an ionizable lipid, a phospholipid, cholesterol, and a lipid-anchored polyethylene glycol (PEG) conjugate (lipid-PEG). Here, LNPs encapsulating mRNA encoding firefly luciferase are formulated by microfluidic mixing of the organic phase containing LNP lipid components and the aqueous phase containing mRNA. These mRNA-LNPs are then tested in vitro to evaluate their transfection efficiency in HepG2 cells using a bioluminescent plate-based assay. Additionally, mRNA-LNPs are evaluated in vivo in C57BL/6 mice following an intravenous injection via the lateral tail vein. Whole-body bioluminescence imaging is performed by using an in vivo imaging system. Representative results are shown for the mRNA-LNP characteristics, their transfection efficiency in HepG2 cells, and the total luminescent flux in C57BL/6 mice.
科研通智能强力驱动
Strongly Powered by AbleSci AI