已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Relationship Between Population-Level SARS-CoV-2 Cycle Threshold Values and Trend of COVID-19 Infection: Longitudinal Study

2019年冠状病毒病(COVID-19) 自回归积分移动平均 统计 人口 医学 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 人口学 分布滞后 数学 时间序列 内科学 传染病(医学专业) 疾病 环境卫生 社会学
作者
Paria Dehesh,Hamid Reza Baradaran,Babak Eshrati,Seyed Abbas Motevalian,Masoud Salehi,Tahereh Donyavi
出处
期刊:JMIR public health and surveillance [JMIR Publications Inc.]
卷期号:8 (11): e36424-e36424 被引量:5
标识
DOI:10.2196/36424
摘要

The distribution of population-level real-time reverse transcription-polymerase chain reaction (RT-PCR) cycle threshold (Ct) values as a proxy of viral load may be a useful indicator for predicting COVID-19 dynamics.The aim of this study was to determine the relationship between the daily trend of average Ct values and COVID-19 dynamics, calculated as the daily number of hospitalized patients with COVID-19, daily number of new positive tests, daily number of COVID-19 deaths, and number of hospitalized patients with COVID-19 by age. We further sought to determine the lag between these data series.The samples included in this study were collected from March 21, 2021, to December 1, 2021. Daily Ct values of all patients who were referred to the Molecular Diagnostic Laboratory of Iran University of Medical Sciences in Tehran, Iran, for RT-PCR tests were recorded. The daily number of positive tests and the number of hospitalized patients by age group were extracted from the COVID-19 patient information registration system in Tehran province, Iran. An autoregressive integrated moving average (ARIMA) model was constructed for the time series of variables. Cross-correlation analysis was then performed to determine the best lag and correlations between the average daily Ct value and other COVID-19 dynamics-related variables. Finally, the best-selected lag of Ct identified through cross-correlation was incorporated as a covariate into the autoregressive integrated moving average with exogenous variables (ARIMAX) model to calculate the coefficients.Daily average Ct values showed a significant negative correlation (23-day time delay) with the daily number of newly hospitalized patients (P=.02), 30-day time delay with the daily number of new positive tests (P=.02), and daily number of COVID-19 deaths (P=.02). The daily average Ct value with a 30-day delay could impact the daily number of positive tests for COVID-19 (β=-16.87, P<.001) and the daily number of deaths from COVID-19 (β=-1.52, P=.03). There was a significant association between Ct lag (23 days) and the number of COVID-19 hospitalizations (β=-24.12, P=.005). Cross-correlation analysis showed significant time delays in the average Ct values and daily hospitalized patients between 18-59 years (23-day time delay, P=.02) and in patients over 60 years old (23-day time delay, P<.001). No statistically significant relation was detected in the number of daily hospitalized patients under 5 years old (9-day time delay, P=.27) and aged 5-17 years (13-day time delay, P=.39).It is important for surveillance of COVID-19 to find a good indicator that can predict epidemic surges in the community. Our results suggest that the average daily Ct value with a 30-day delay can predict increases in the number of positive confirmed COVID-19 cases, which may be a useful indicator for the health system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵冬卉发布了新的文献求助10
1秒前
6秒前
梦回唐朝完成签到 ,获得积分10
6秒前
CR7完成签到,获得积分10
7秒前
woshizhengde关注了科研通微信公众号
10秒前
17秒前
18秒前
19秒前
TKTATO发布了新的文献求助10
23秒前
25秒前
28秒前
興崋完成签到 ,获得积分10
29秒前
31秒前
Dali完成签到 ,获得积分10
31秒前
31秒前
33秒前
woshizhengde发布了新的文献求助10
34秒前
菲1208完成签到,获得积分10
36秒前
38秒前
朱文韬发布了新的文献求助10
39秒前
赘婿应助PrayOne采纳,获得10
41秒前
King丶惠忍完成签到,获得积分10
41秒前
42秒前
握月担风完成签到,获得积分10
42秒前
Leif完成签到 ,获得积分0
43秒前
wei发布了新的文献求助10
44秒前
科研通AI2S应助陪你长大采纳,获得10
44秒前
希望天下0贩的0应助Kashing采纳,获得30
45秒前
47秒前
54秒前
55秒前
Alicia完成签到 ,获得积分10
55秒前
张张完成签到,获得积分20
56秒前
59秒前
景__完成签到 ,获得积分10
1分钟前
张张发布了新的文献求助10
1分钟前
wei完成签到,获得积分10
1分钟前
1分钟前
lulululululu发布了新的文献求助10
1分钟前
乐乐应助张张采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455593
求助须知:如何正确求助?哪些是违规求助? 3050813
关于积分的说明 9022781
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502690
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387