UPanGAN: Unsupervised pansharpening based on the spectral and spatial loss constrained Generative Adversarial Network

全色胶片 计算机科学 多光谱图像 人工智能 基本事实 图像分辨率 模式识别(心理学) 图像(数学) 计算机视觉 生成对抗网络 图像融合
作者
Qizhi Xu,Yuan Li,Jinyan Nie,Qingjie Liu,Mengyao Guo
出处
期刊:Information Fusion [Elsevier]
卷期号:91: 31-46 被引量:29
标识
DOI:10.1016/j.inffus.2022.10.001
摘要

It is observed that, in most of the CNN-based pansharpening methods, the multispectral (MS) images are taken as the ground truth, and the downsampled panchromatic (Pan) and MS images are taken as the training data. However, the trained models from the downsampled images are not suitable for the pansharpening of the MS images with rich spatial and spectral information at their original spatial resolution. To tackle this problem, a novel iterative network based on spectral and textural loss constrained Generative Adversarial Network (GAN) is proposed for pansharpening. First, instead of directly outputting the fused imagery, the GAN focuses on generating the mean difference image. The input of the GAN is a good initial difference image, which will make the network work better. Second, the coarse-to-fine fusion framework is designed to generate the fused imagery. It uses two optimized discriminators to distinguish the generated images, and performs multi-level fusion processing on PAN and MS images to generate the best pansharpening image in full resolution. Finally, the well-designed loss functions are embedded into both the generator and the discriminators to accurately preserve the fidelity of the fused imagery. We validated our method by the images from QuickBird, GaoFen-2 and WorldView-2 satellites. The experimental results demonstrated that the proposed method obtained a better fusion performance than the state-of-the-art methods in both visual comparison and quantitative evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慎独而已完成签到,获得积分10
刚刚
搜集达人应助gdh采纳,获得10
1秒前
Lucas应助科研小白采纳,获得10
2秒前
louise发布了新的文献求助10
2秒前
LLL发布了新的文献求助10
2秒前
暖光发布了新的文献求助10
3秒前
micomico完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
WT发布了新的文献求助10
4秒前
4秒前
帅帅哈发布了新的文献求助10
5秒前
5秒前
能干水蓝发布了新的文献求助10
5秒前
叭叭叭发布了新的文献求助10
6秒前
生动的如花完成签到,获得积分10
6秒前
江南小水龟完成签到,获得积分10
6秒前
深情安青应助机灵的千琴采纳,获得10
6秒前
123完成签到 ,获得积分10
6秒前
共享精神应助zzw采纳,获得10
6秒前
传奇3应助zzw采纳,获得10
6秒前
斯文败类应助zzw采纳,获得10
6秒前
传奇3应助zzw采纳,获得10
6秒前
一枚研究僧应助丑丑阿采纳,获得30
7秒前
MoMo完成签到,获得积分10
7秒前
要减肥的凝琴完成签到,获得积分10
7秒前
隐形完成签到,获得积分10
7秒前
8秒前
zzh完成签到 ,获得积分10
8秒前
西西里柠檬完成签到,获得积分10
8秒前
完美世界应助LLL采纳,获得10
9秒前
9秒前
多多发布了新的文献求助10
10秒前
10秒前
tttttttttt完成签到 ,获得积分10
10秒前
Koi完成签到 ,获得积分10
10秒前
aaaaa发布了新的文献求助10
10秒前
惊鸿一瞥发布了新的文献求助10
11秒前
脑洞疼应助xdc采纳,获得10
11秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3230149
求助须知:如何正确求助?哪些是违规求助? 2877816
关于积分的说明 8201869
捐赠科研通 2545094
什么是DOI,文献DOI怎么找? 1374844
科研通“疑难数据库(出版商)”最低求助积分说明 647174
邀请新用户注册赠送积分活动 622000