Planning reliable service facility location against disruption risks and last-mile congestion in a continuous space

英里 最后一英里(运输) 服务(商务) 空格(标点符号) 计算机科学 运输工程 运营管理 业务 工程类 地理 操作系统 营销 大地测量学
作者
Zhaodong Wang,Siyang Xie,Yanfeng Ouyang
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:165: 123-140 被引量:4
标识
DOI:10.1016/j.trb.2022.09.005
摘要

This paper proposes a methodological framework that incorporates probabilistic facility disruption risks, last-mile customers travel path choices, and the induced traffic congestion near the facilities into the consideration of service facility location planning. The customers can be pedestrians, drones, or any autonomous vehicles that do not have to travel via fixed channels to access a service facility. Analytical models are developed to evaluate the expected performance of a facility location design across an exponential number of facility disruption scenarios. In each of these scenarios, customers travel to a functioning facility through a continuous space, and their destination and path choices under traffic equilibrium are described by a class of partial differential equation (PDE). A closed-form solution to the PDE is derived in an explicit matrix form, and this paper shows how the traffic equilibrium patterns across all facility disruption scenarios can be evaluated in a polynomial time. These new analytical results are then incorporated into continuous and discrete optimization frameworks for facility location design. Numerical experiments are conducted to test the computational performance of the proposed modeling framework. • Reliable facility location design under probabilistic facility disruption risks. • Congestion and continuous traffic equilibrium in a continuous space without guideways. • Analytical models to evaluate the expected performance of a facility location design. • System cost across an exponential number of disruption scenarios evaluated in a polynomial time. • Analytical results incorporated into continuous and discrete optimization frameworks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
马家辉发布了新的文献求助10
1秒前
在水一方应助chen采纳,获得10
1秒前
FashionBoy应助Menahemxie采纳,获得10
1秒前
Jared应助玩命的芝麻采纳,获得10
1秒前
文静季节完成签到,获得积分20
1秒前
1秒前
吉吉完成签到,获得积分10
2秒前
HEYUYU发布了新的文献求助10
2秒前
moonpie关注了科研通微信公众号
3秒前
3秒前
3秒前
专注的曼卉发布了新的文献求助100
3秒前
haimianbaobao发布了新的文献求助10
3秒前
4秒前
4秒前
123发布了新的文献求助10
5秒前
5秒前
科目三应助Khr1stINK采纳,获得10
5秒前
5秒前
5秒前
考博圣体完成签到,获得积分10
6秒前
gf完成签到,获得积分10
6秒前
Tsuki完成签到 ,获得积分10
6秒前
小马甲应助平淡的白云采纳,获得10
6秒前
冷月寒寒大魔王完成签到,获得积分20
6秒前
6秒前
今后应助雪松采纳,获得10
7秒前
7秒前
鲸鱼发布了新的文献求助10
7秒前
7秒前
爆米花应助干净冬莲采纳,获得10
7秒前
7秒前
8秒前
8秒前
quan发布了新的文献求助10
8秒前
叮当完成签到,获得积分20
8秒前
8秒前
9秒前
云野华完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482