亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving DNA-Binding Protein Prediction Using Three-Part Sequence-Order Feature Extraction and a Deep Neural Network Algorithm

判别式 人工神经网络 序列(生物学) 计算机科学 深度学习 人工智能 特征(语言学) 模式识别(心理学) DNA测序 蛋白质测序 卷积神经网络 循环神经网络 特征提取 机器学习 算法 DNA 肽序列 基因 生物 遗传学 语言学 哲学 生物化学
作者
Jun Hu,Wenwu Zeng,Ning-Xin Jia,Muhammad Arif,Dong‐Jun Yu,Guijun Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (3): 1044-1057 被引量:8
标识
DOI:10.1021/acs.jcim.2c00943
摘要

Identification of the DNA-binding protein (DBP) helps dig out information embedded in the DNA-protein interaction, which is significant to understanding the mechanisms of DNA replication, transcription, and repair. Although existing computational methods for predicting the DBPs based on protein sequences have obtained great success, there is still room for improvement since the sequence-order information is not fully mined in these methods. In this study, a new three-part sequence-order feature extraction (called TPSO) strategy is developed to extract more discriminative information from protein sequences for predicting the DBPs. For each query protein, TPSO first divides its primary sequence features into N- and C-terminal fragments and then extracts the numerical pseudo features of three parts including the full sequence and these two fragments, respectively. Based on TPSO, a novel deep learning-based method, called TPSO-DBP, is proposed, which employs the sequence-based single-view features, the bidirectional long short-term memory (BiLSTM) and fully connected (FC) neural networks to learn the DBP prediction model. Empirical outcomes reveal that TPSO-DBP can achieve an accuracy of 87.01%, covering 85.30% of all DBPs, while achieving a Matthew's correlation coefficient value (0.741) that is significantly higher than most existing state-of-the-art DBP prediction methods. Detailed data analyses have indicated that the advantages of TPSO-DBP lie in the utilization of TPSO, which helps extract more concealed prominent patterns, and the deep neural network framework composed of BiLSTM and FC that learns the nonlinear relationships between input features and DBPs. The standalone package and web server of TPSO-DBP are freely available at https://jun-csbio.github.io/TPSO-DBP/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KYTQQ完成签到 ,获得积分10
4秒前
小青年儿完成签到 ,获得积分10
35秒前
星辰大海应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
automan发布了新的文献求助10
2分钟前
汉堡包应助river_121采纳,获得30
2分钟前
4分钟前
river_121发布了新的文献求助30
4分钟前
你好完成签到,获得积分10
4分钟前
Emma完成签到 ,获得积分10
4分钟前
5分钟前
Criminology34应助balko采纳,获得10
5分钟前
5分钟前
小小牛完成签到,获得积分10
5分钟前
聪慧的凝海完成签到 ,获得积分0
5分钟前
5分钟前
Criminology34举报waalsss求助涉嫌违规
5分钟前
6分钟前
倦鸟归林完成签到,获得积分10
6分钟前
倦鸟归林发布了新的文献求助10
6分钟前
Criminology34举报六蒙骑士求助涉嫌违规
6分钟前
Jasper应助科研通管家采纳,获得10
6分钟前
7分钟前
Criminology34举报狂野傲白求助涉嫌违规
7分钟前
1123048683wm发布了新的文献求助10
7分钟前
7分钟前
1123048683wm完成签到,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
从容的小天鹅完成签到,获得积分20
7分钟前
7分钟前
顾矜应助从容的小天鹅采纳,获得10
7分钟前
慕青应助river_121采纳,获得30
8分钟前
胖小羊完成签到 ,获得积分10
8分钟前
脑洞疼应助考拉采纳,获得10
8分钟前
8分钟前
魏聪完成签到,获得积分10
8分钟前
魏聪发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635029
求助须知:如何正确求助?哪些是违规求助? 4734553
关于积分的说明 14989637
捐赠科研通 4792779
什么是DOI,文献DOI怎么找? 2559891
邀请新用户注册赠送积分活动 1520158
关于科研通互助平台的介绍 1480221