Improving DNA-Binding Protein Prediction Using Three-Part Sequence-Order Feature Extraction and a Deep Neural Network Algorithm

判别式 人工神经网络 序列(生物学) 计算机科学 深度学习 人工智能 特征(语言学) 模式识别(心理学) DNA测序 蛋白质测序 卷积神经网络 循环神经网络 特征提取 机器学习 算法 DNA 肽序列 基因 生物 遗传学 语言学 哲学 生物化学
作者
Jun Hu,Wenwu Zeng,Ning-Xin Jia,Muhammad Arif,Dong‐Jun Yu,Guijun Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (3): 1044-1057 被引量:8
标识
DOI:10.1021/acs.jcim.2c00943
摘要

Identification of the DNA-binding protein (DBP) helps dig out information embedded in the DNA-protein interaction, which is significant to understanding the mechanisms of DNA replication, transcription, and repair. Although existing computational methods for predicting the DBPs based on protein sequences have obtained great success, there is still room for improvement since the sequence-order information is not fully mined in these methods. In this study, a new three-part sequence-order feature extraction (called TPSO) strategy is developed to extract more discriminative information from protein sequences for predicting the DBPs. For each query protein, TPSO first divides its primary sequence features into N- and C-terminal fragments and then extracts the numerical pseudo features of three parts including the full sequence and these two fragments, respectively. Based on TPSO, a novel deep learning-based method, called TPSO-DBP, is proposed, which employs the sequence-based single-view features, the bidirectional long short-term memory (BiLSTM) and fully connected (FC) neural networks to learn the DBP prediction model. Empirical outcomes reveal that TPSO-DBP can achieve an accuracy of 87.01%, covering 85.30% of all DBPs, while achieving a Matthew's correlation coefficient value (0.741) that is significantly higher than most existing state-of-the-art DBP prediction methods. Detailed data analyses have indicated that the advantages of TPSO-DBP lie in the utilization of TPSO, which helps extract more concealed prominent patterns, and the deep neural network framework composed of BiLSTM and FC that learns the nonlinear relationships between input features and DBPs. The standalone package and web server of TPSO-DBP are freely available at https://jun-csbio.github.io/TPSO-DBP/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雷小牛完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
弯弯完成签到 ,获得积分10
4秒前
周小松发布了新的文献求助10
4秒前
找文献的天才狗完成签到 ,获得积分10
6秒前
生动雨真完成签到 ,获得积分10
6秒前
drake发布了新的文献求助10
7秒前
7秒前
小宝宝完成签到 ,获得积分10
8秒前
9秒前
10秒前
xxxxxxxx完成签到 ,获得积分10
13秒前
寻道图强应助可以的采纳,获得30
13秒前
搜集达人应助李承恩采纳,获得10
13秒前
14秒前
万能图书馆应助阿金采纳,获得10
14秒前
小号发布了新的文献求助10
15秒前
YANG发布了新的文献求助30
15秒前
15秒前
18秒前
18秒前
johnzsin发布了新的文献求助10
18秒前
专注的小松鼠完成签到,获得积分10
18秒前
浅尝离白应助cloudyick采纳,获得30
19秒前
YANG完成签到,获得积分10
21秒前
觅兴完成签到,获得积分10
22秒前
23秒前
YAMO一完成签到,获得积分10
24秒前
星辰大海应助ste11ar采纳,获得10
24秒前
YL发布了新的文献求助10
25秒前
Sean完成签到 ,获得积分10
26秒前
子陵完成签到 ,获得积分10
27秒前
27秒前
动听如天完成签到,获得积分10
27秒前
养头猪饿了吃完成签到,获得积分10
27秒前
华仔应助drake采纳,获得10
28秒前
JUNO完成签到 ,获得积分10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137214
求助须知:如何正确求助?哪些是违规求助? 2788251
关于积分的说明 7785413
捐赠科研通 2444284
什么是DOI,文献DOI怎么找? 1299869
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023