Improving DNA-Binding Protein Prediction Using Three-Part Sequence-Order Feature Extraction and a Deep Neural Network Algorithm

判别式 人工神经网络 序列(生物学) 计算机科学 深度学习 人工智能 特征(语言学) 模式识别(心理学) DNA测序 蛋白质测序 卷积神经网络 循环神经网络 特征提取 机器学习 算法 DNA 肽序列 基因 生物 遗传学 语言学 哲学 生物化学
作者
Jun Hu,Wenwu Zeng,Ning-Xin Jia,Muhammad Arif,Dong‐Jun Yu,Guijun Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (3): 1044-1057 被引量:8
标识
DOI:10.1021/acs.jcim.2c00943
摘要

Identification of the DNA-binding protein (DBP) helps dig out information embedded in the DNA-protein interaction, which is significant to understanding the mechanisms of DNA replication, transcription, and repair. Although existing computational methods for predicting the DBPs based on protein sequences have obtained great success, there is still room for improvement since the sequence-order information is not fully mined in these methods. In this study, a new three-part sequence-order feature extraction (called TPSO) strategy is developed to extract more discriminative information from protein sequences for predicting the DBPs. For each query protein, TPSO first divides its primary sequence features into N- and C-terminal fragments and then extracts the numerical pseudo features of three parts including the full sequence and these two fragments, respectively. Based on TPSO, a novel deep learning-based method, called TPSO-DBP, is proposed, which employs the sequence-based single-view features, the bidirectional long short-term memory (BiLSTM) and fully connected (FC) neural networks to learn the DBP prediction model. Empirical outcomes reveal that TPSO-DBP can achieve an accuracy of 87.01%, covering 85.30% of all DBPs, while achieving a Matthew's correlation coefficient value (0.741) that is significantly higher than most existing state-of-the-art DBP prediction methods. Detailed data analyses have indicated that the advantages of TPSO-DBP lie in the utilization of TPSO, which helps extract more concealed prominent patterns, and the deep neural network framework composed of BiLSTM and FC that learns the nonlinear relationships between input features and DBPs. The standalone package and web server of TPSO-DBP are freely available at https://jun-csbio.github.io/TPSO-DBP/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜若冰发布了新的文献求助10
刚刚
orixero应助雾里看花采纳,获得10
刚刚
1秒前
红芍完成签到,获得积分10
1秒前
zz发布了新的文献求助10
1秒前
1秒前
广州队发布了新的文献求助10
3秒前
拼搏的璇完成签到 ,获得积分10
3秒前
酷波er应助务实思烟采纳,获得10
3秒前
3秒前
shuoshuo发布了新的文献求助10
3秒前
科研通AI6应助晚风摇曳采纳,获得10
3秒前
bluekids完成签到,获得积分10
4秒前
4秒前
脑洞疼应助可爱花瓣采纳,获得10
6秒前
Akim应助科研虫儿采纳,获得10
6秒前
危机的煎蛋完成签到 ,获得积分10
7秒前
imchenyin完成签到,获得积分10
7秒前
浮游应助boyue采纳,获得10
8秒前
Hello应助boyue采纳,获得10
8秒前
Sven完成签到,获得积分10
8秒前
8秒前
浮游应助饱满的铅笔采纳,获得10
9秒前
9秒前
王大纯发布了新的文献求助10
9秒前
10秒前
小青椒应助xdd采纳,获得150
10秒前
zhouxuan发布了新的文献求助10
10秒前
10秒前
小月完成签到,获得积分10
11秒前
laa发布了新的文献求助10
11秒前
wait发布了新的文献求助200
12秒前
12秒前
绵羊发布了新的文献求助10
12秒前
13秒前
13秒前
Lily完成签到,获得积分10
13秒前
睡洋洋完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4959983
求助须知:如何正确求助?哪些是违规求助? 4220536
关于积分的说明 13143223
捐赠科研通 4004417
什么是DOI,文献DOI怎么找? 2191353
邀请新用户注册赠送积分活动 1205645
关于科研通互助平台的介绍 1116915