Improving DNA-Binding Protein Prediction Using Three-Part Sequence-Order Feature Extraction and a Deep Neural Network Algorithm

判别式 人工神经网络 序列(生物学) 计算机科学 深度学习 人工智能 特征(语言学) 模式识别(心理学) DNA测序 蛋白质测序 卷积神经网络 循环神经网络 特征提取 机器学习 算法 DNA 肽序列 基因 生物 遗传学 语言学 哲学 生物化学
作者
Jun Hu,Wenwu Zeng,Ning-Xin Jia,Muhammad Arif,Dong‐Jun Yu,Guijun Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (3): 1044-1057 被引量:8
标识
DOI:10.1021/acs.jcim.2c00943
摘要

Identification of the DNA-binding protein (DBP) helps dig out information embedded in the DNA-protein interaction, which is significant to understanding the mechanisms of DNA replication, transcription, and repair. Although existing computational methods for predicting the DBPs based on protein sequences have obtained great success, there is still room for improvement since the sequence-order information is not fully mined in these methods. In this study, a new three-part sequence-order feature extraction (called TPSO) strategy is developed to extract more discriminative information from protein sequences for predicting the DBPs. For each query protein, TPSO first divides its primary sequence features into N- and C-terminal fragments and then extracts the numerical pseudo features of three parts including the full sequence and these two fragments, respectively. Based on TPSO, a novel deep learning-based method, called TPSO-DBP, is proposed, which employs the sequence-based single-view features, the bidirectional long short-term memory (BiLSTM) and fully connected (FC) neural networks to learn the DBP prediction model. Empirical outcomes reveal that TPSO-DBP can achieve an accuracy of 87.01%, covering 85.30% of all DBPs, while achieving a Matthew's correlation coefficient value (0.741) that is significantly higher than most existing state-of-the-art DBP prediction methods. Detailed data analyses have indicated that the advantages of TPSO-DBP lie in the utilization of TPSO, which helps extract more concealed prominent patterns, and the deep neural network framework composed of BiLSTM and FC that learns the nonlinear relationships between input features and DBPs. The standalone package and web server of TPSO-DBP are freely available at https://jun-csbio.github.io/TPSO-DBP/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Maxw发布了新的文献求助10
1秒前
1秒前
meimale发布了新的文献求助10
1秒前
Aliiiice发布了新的文献求助10
1秒前
yyyyyyy发布了新的文献求助10
1秒前
cx发布了新的文献求助10
2秒前
纯真的风关注了科研通微信公众号
4秒前
呱瓜捏完成签到,获得积分20
4秒前
4秒前
4秒前
王晨光发布了新的文献求助10
5秒前
华仔应助yyyyyyy采纳,获得10
6秒前
7秒前
liu完成签到,获得积分20
8秒前
可爱的函函应助二舅司机采纳,获得10
8秒前
hhl发布了新的文献求助10
9秒前
SciGPT应助cx采纳,获得10
9秒前
乐仔发布了新的文献求助10
10秒前
等待夏旋发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
burstsolo发布了新的文献求助30
12秒前
Lillianzhu1完成签到,获得积分10
13秒前
爱吃花生的猴子应助小昔采纳,获得10
14秒前
zxc发布了新的文献求助10
14秒前
14秒前
16秒前
17秒前
Zhang完成签到,获得积分10
18秒前
药学僧发布了新的文献求助20
18秒前
Sally发布了新的文献求助10
18秒前
19秒前
wlei发布了新的文献求助10
19秒前
小黑完成签到 ,获得积分10
19秒前
19秒前
易水完成签到 ,获得积分10
21秒前
二舅司机发布了新的文献求助10
22秒前
Solarenergy完成签到,获得积分0
22秒前
Eicky完成签到,获得积分10
22秒前
win完成签到 ,获得积分10
22秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580621
求助须知:如何正确求助?哪些是违规求助? 4665406
关于积分的说明 14756133
捐赠科研通 4606909
什么是DOI,文献DOI怎么找? 2528092
邀请新用户注册赠送积分活动 1497385
关于科研通互助平台的介绍 1466355