Improving DNA-Binding Protein Prediction Using Three-Part Sequence-Order Feature Extraction and a Deep Neural Network Algorithm

判别式 人工神经网络 序列(生物学) 计算机科学 深度学习 人工智能 特征(语言学) 模式识别(心理学) DNA测序 蛋白质测序 卷积神经网络 循环神经网络 特征提取 机器学习 算法 DNA 肽序列 基因 生物 遗传学 语言学 哲学 生物化学
作者
Jun Hu,Wenwu Zeng,Ning-Xin Jia,Muhammad Arif,Dong‐Jun Yu,Guijun Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (3): 1044-1057 被引量:8
标识
DOI:10.1021/acs.jcim.2c00943
摘要

Identification of the DNA-binding protein (DBP) helps dig out information embedded in the DNA-protein interaction, which is significant to understanding the mechanisms of DNA replication, transcription, and repair. Although existing computational methods for predicting the DBPs based on protein sequences have obtained great success, there is still room for improvement since the sequence-order information is not fully mined in these methods. In this study, a new three-part sequence-order feature extraction (called TPSO) strategy is developed to extract more discriminative information from protein sequences for predicting the DBPs. For each query protein, TPSO first divides its primary sequence features into N- and C-terminal fragments and then extracts the numerical pseudo features of three parts including the full sequence and these two fragments, respectively. Based on TPSO, a novel deep learning-based method, called TPSO-DBP, is proposed, which employs the sequence-based single-view features, the bidirectional long short-term memory (BiLSTM) and fully connected (FC) neural networks to learn the DBP prediction model. Empirical outcomes reveal that TPSO-DBP can achieve an accuracy of 87.01%, covering 85.30% of all DBPs, while achieving a Matthew's correlation coefficient value (0.741) that is significantly higher than most existing state-of-the-art DBP prediction methods. Detailed data analyses have indicated that the advantages of TPSO-DBP lie in the utilization of TPSO, which helps extract more concealed prominent patterns, and the deep neural network framework composed of BiLSTM and FC that learns the nonlinear relationships between input features and DBPs. The standalone package and web server of TPSO-DBP are freely available at https://jun-csbio.github.io/TPSO-DBP/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小番茄完成签到 ,获得积分10
刚刚
饱满南松发布了新的文献求助10
刚刚
FengYun发布了新的文献求助10
刚刚
刚刚
1秒前
于其言发布了新的文献求助20
2秒前
zzzzz完成签到,获得积分10
2秒前
光亮亦竹完成签到 ,获得积分10
2秒前
2秒前
3秒前
4秒前
张安安完成签到,获得积分10
4秒前
无语的千秋应助刘芸若诗采纳,获得10
4秒前
kaiqiang完成签到,获得积分10
5秒前
茫123456完成签到,获得积分10
6秒前
6秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
chenqiumu应助科研通管家采纳,获得20
7秒前
orixero应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
浮游应助清爽的夜安采纳,获得10
7秒前
7秒前
Ava应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
chenqiumu应助科研通管家采纳,获得20
7秒前
慕青应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
深情安青应助五六七采纳,获得10
8秒前
小卡拉米完成签到,获得积分10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
玄风应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
英姑应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505274
求助须知:如何正确求助?哪些是违规求助? 4600815
关于积分的说明 14474557
捐赠科研通 4534974
什么是DOI,文献DOI怎么找? 2485092
邀请新用户注册赠送积分活动 1468177
关于科研通互助平台的介绍 1440669