亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving DNA-Binding Protein Prediction Using Three-Part Sequence-Order Feature Extraction and a Deep Neural Network Algorithm

判别式 人工神经网络 序列(生物学) 计算机科学 深度学习 人工智能 特征(语言学) 模式识别(心理学) DNA测序 蛋白质测序 卷积神经网络 循环神经网络 特征提取 机器学习 算法 DNA 肽序列 基因 生物 遗传学 语言学 哲学 生物化学
作者
Jun Hu,Wenwu Zeng,Ning-Xin Jia,Muhammad Arif,Dong‐Jun Yu,Guijun Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (3): 1044-1057 被引量:8
标识
DOI:10.1021/acs.jcim.2c00943
摘要

Identification of the DNA-binding protein (DBP) helps dig out information embedded in the DNA-protein interaction, which is significant to understanding the mechanisms of DNA replication, transcription, and repair. Although existing computational methods for predicting the DBPs based on protein sequences have obtained great success, there is still room for improvement since the sequence-order information is not fully mined in these methods. In this study, a new three-part sequence-order feature extraction (called TPSO) strategy is developed to extract more discriminative information from protein sequences for predicting the DBPs. For each query protein, TPSO first divides its primary sequence features into N- and C-terminal fragments and then extracts the numerical pseudo features of three parts including the full sequence and these two fragments, respectively. Based on TPSO, a novel deep learning-based method, called TPSO-DBP, is proposed, which employs the sequence-based single-view features, the bidirectional long short-term memory (BiLSTM) and fully connected (FC) neural networks to learn the DBP prediction model. Empirical outcomes reveal that TPSO-DBP can achieve an accuracy of 87.01%, covering 85.30% of all DBPs, while achieving a Matthew's correlation coefficient value (0.741) that is significantly higher than most existing state-of-the-art DBP prediction methods. Detailed data analyses have indicated that the advantages of TPSO-DBP lie in the utilization of TPSO, which helps extract more concealed prominent patterns, and the deep neural network framework composed of BiLSTM and FC that learns the nonlinear relationships between input features and DBPs. The standalone package and web server of TPSO-DBP are freely available at https://jun-csbio.github.io/TPSO-DBP/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哩哩完成签到 ,获得积分10
21秒前
22秒前
23秒前
空城发布了新的文献求助10
28秒前
andrele发布了新的文献求助10
30秒前
31秒前
Cmqq发布了新的文献求助10
37秒前
柒年啵啵完成签到 ,获得积分10
50秒前
张志超发布了新的文献求助10
52秒前
CodeCraft应助儒雅的城采纳,获得80
55秒前
Fein_W完成签到,获得积分10
57秒前
willlee完成签到 ,获得积分10
57秒前
paradox完成签到 ,获得积分10
58秒前
天天快乐应助标致的怀绿采纳,获得10
1分钟前
李爱国应助Cmqq采纳,获得10
1分钟前
Akim应助peng采纳,获得10
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
Canonical_SMILES完成签到 ,获得积分10
1分钟前
儒雅的城发布了新的文献求助80
1分钟前
大朋友发布了新的文献求助10
2分钟前
2分钟前
peng发布了新的文献求助10
2分钟前
大朋友完成签到,获得积分10
2分钟前
獐子岛在逃扇贝完成签到,获得积分20
2分钟前
搜集达人应助凶狠的秀发采纳,获得10
2分钟前
ruiruirui完成签到 ,获得积分10
2分钟前
空城驳回了wanci应助
2分钟前
2分钟前
Cmqq发布了新的文献求助10
3分钟前
qqq完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
小白加油完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685483
关于积分的说明 14838528
捐赠科研通 4670394
什么是DOI,文献DOI怎么找? 2538191
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904