Transformer Based Conditional GAN for Multimodal Image Fusion

计算机科学 图像融合 人工智能 变压器 计算机视觉 模式识别(心理学) 图像(数学) 量子力学 物理 电压
作者
Jun Zhang,Licheng Jiao,Wenping Ma,Fang Liu,Xu Liu,Lingling Li,Puhua Chen,Shuyuan Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8988-9001 被引量:35
标识
DOI:10.1109/tmm.2023.3243659
摘要

Multimodal Image fusion is becoming urgent in multi-sensor information utilization. However, existing end-to-end image fusion frameworks ignore a priori knowledge integration and long-distance dependencies across domains, which brings challenges to the network convergence and global image perception in complex scenes. In this paper, a conditional generative adversarial network with transformer (TCGAN) is proposed for multimodal image fusion. The generator is to generate a fused image with the source images content. The discriminators are adopted to distinguish the differences between the fused image and the source images. Adversarial training makes the final fused image to maintain the structural and textural details in the cross-modal images simultaneously. In particular, a wavelet fusion module makes the inputs contain image content from different domains as much as possible. The extracted convolutional features interact in the multiscale cross-modal transformer fusion module to fully complement the associated information. It makes the generator to focus on both local and global context. TCGAN fully considers the training efficiency of the adversarial process and the integrated retention of redundant information. Various experimental results of TCGAN have highlighted targets, rich details, and fast convergence properties on public datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
CodeCraft应助yyan采纳,获得10
1秒前
笑点低的悒完成签到 ,获得积分10
1秒前
bjbmtxy完成签到,获得积分10
2秒前
小吃货发布了新的文献求助20
2秒前
Owen应助LiuZfosu采纳,获得10
2秒前
王中丽完成签到 ,获得积分10
2秒前
3秒前
无名完成签到,获得积分10
3秒前
G18960完成签到,获得积分10
4秒前
liu发布了新的文献求助10
4秒前
辞羽发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
大模型应助11111采纳,获得10
6秒前
梦游天吟留别完成签到,获得积分10
6秒前
yyan完成签到,获得积分10
7秒前
7秒前
活力小笼包完成签到,获得积分10
9秒前
cheese完成签到,获得积分10
9秒前
桐桐应助sweetsbt采纳,获得10
10秒前
南风知我意完成签到,获得积分10
10秒前
深情安青应助跳跃的大楚采纳,获得30
10秒前
Zoe完成签到,获得积分10
10秒前
Cheny完成签到 ,获得积分10
11秒前
11秒前
11秒前
核桃发布了新的文献求助10
12秒前
14秒前
Ava应助可靠的啤酒采纳,获得10
14秒前
panpanpanda完成签到 ,获得积分10
14秒前
SUNLE完成签到,获得积分10
15秒前
老秦完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586202
求助须知:如何正确求助?哪些是违规求助? 4669536
关于积分的说明 14778743
捐赠科研通 4619127
什么是DOI,文献DOI怎么找? 2530801
邀请新用户注册赠送积分活动 1499593
关于科研通互助平台的介绍 1467788