Transformer Based Conditional GAN for Multimodal Image Fusion

计算机科学 图像融合 人工智能 变压器 计算机视觉 模式识别(心理学) 图像(数学) 量子力学 物理 电压
作者
Jun Zhang,Licheng Jiao,Wenping Ma,Fang Liu,Xu Liu,Lingling Li,Puhua Chen,Shuyuan Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8988-9001 被引量:35
标识
DOI:10.1109/tmm.2023.3243659
摘要

Multimodal Image fusion is becoming urgent in multi-sensor information utilization. However, existing end-to-end image fusion frameworks ignore a priori knowledge integration and long-distance dependencies across domains, which brings challenges to the network convergence and global image perception in complex scenes. In this paper, a conditional generative adversarial network with transformer (TCGAN) is proposed for multimodal image fusion. The generator is to generate a fused image with the source images content. The discriminators are adopted to distinguish the differences between the fused image and the source images. Adversarial training makes the final fused image to maintain the structural and textural details in the cross-modal images simultaneously. In particular, a wavelet fusion module makes the inputs contain image content from different domains as much as possible. The extracted convolutional features interact in the multiscale cross-modal transformer fusion module to fully complement the associated information. It makes the generator to focus on both local and global context. TCGAN fully considers the training efficiency of the adversarial process and the integrated retention of redundant information. Various experimental results of TCGAN have highlighted targets, rich details, and fast convergence properties on public datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助笑点低钥匙采纳,获得10
刚刚
Hello应助无奈的萝采纳,获得10
1秒前
tangli完成签到 ,获得积分10
1秒前
1秒前
装洋柿子发布了新的文献求助10
1秒前
1秒前
Juvianne发布了新的文献求助10
2秒前
所所应助pliciyir采纳,获得10
2秒前
赘婿应助陶醉山灵采纳,获得10
2秒前
斯文败类应助niko采纳,获得10
2秒前
科目三应助niko采纳,获得10
2秒前
完美世界应助niko采纳,获得10
2秒前
深情安青应助niko采纳,获得10
2秒前
科研通AI6应助niko采纳,获得10
2秒前
2秒前
2秒前
科研通AI6应助niko采纳,获得10
2秒前
野性的摩托完成签到,获得积分20
2秒前
我是老大应助niko采纳,获得10
3秒前
充电宝应助niko采纳,获得10
3秒前
深情安青应助niko采纳,获得10
3秒前
77发布了新的文献求助10
3秒前
搜集达人应助niko采纳,获得10
3秒前
完美世界应助Aa采纳,获得10
3秒前
科研通AI6应助xmyang采纳,获得10
3秒前
3秒前
Tsuki发布了新的文献求助10
3秒前
摘星012完成签到 ,获得积分10
4秒前
Lee完成签到,获得积分10
4秒前
柒0发布了新的文献求助10
4秒前
4秒前
也行发布了新的文献求助10
4秒前
完美世界应助舟遥遥采纳,获得10
5秒前
11235应助大婷子采纳,获得10
5秒前
搜集达人应助潔思米采纳,获得10
5秒前
5秒前
含蓄的大船完成签到,获得积分10
6秒前
黄哈哈完成签到,获得积分10
7秒前
浮游应助小龙采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531780
求助须知:如何正确求助?哪些是违规求助? 4620574
关于积分的说明 14573778
捐赠科研通 4560339
什么是DOI,文献DOI怎么找? 2498813
邀请新用户注册赠送积分活动 1478687
关于科研通互助平台的介绍 1450049