Transformer Based Conditional GAN for Multimodal Image Fusion

计算机科学 图像融合 人工智能 变压器 计算机视觉 模式识别(心理学) 图像(数学) 量子力学 物理 电压
作者
Jun Zhang,Licheng Jiao,Wenping Ma,Fang Liu,Xu Liu,Lingling Li,Puhua Chen,Shuyuan Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8988-9001 被引量:30
标识
DOI:10.1109/tmm.2023.3243659
摘要

Multimodal Image fusion is becoming urgent in multi-sensor information utilization. However, existing end-to-end image fusion frameworks ignore a priori knowledge integration and long-distance dependencies across domains, which brings challenges to the network convergence and global image perception in complex scenes. In this paper, a conditional generative adversarial network with transformer (TCGAN) is proposed for multimodal image fusion. The generator is to generate a fused image with the source images content. The discriminators are adopted to distinguish the differences between the fused image and the source images. Adversarial training makes the final fused image to maintain the structural and textural details in the cross-modal images simultaneously. In particular, a wavelet fusion module makes the inputs contain image content from different domains as much as possible. The extracted convolutional features interact in the multiscale cross-modal transformer fusion module to fully complement the associated information. It makes the generator to focus on both local and global context. TCGAN fully considers the training efficiency of the adversarial process and the integrated retention of redundant information. Various experimental results of TCGAN have highlighted targets, rich details, and fast convergence properties on public datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1531811完成签到,获得积分20
刚刚
1秒前
1秒前
1秒前
2秒前
2秒前
CodeCraft应助DaiTing采纳,获得10
3秒前
zhoushishan发布了新的文献求助10
3秒前
spiritpope发布了新的文献求助10
3秒前
3秒前
微调完成签到,获得积分10
3秒前
坚强三德发布了新的文献求助10
4秒前
快乐雪青关注了科研通微信公众号
4秒前
猪猪hero发布了新的文献求助10
4秒前
4秒前
方圆几里发布了新的文献求助100
4秒前
4秒前
上官若男应助柳易槐采纳,获得10
5秒前
Yi完成签到,获得积分10
6秒前
室内设计发布了新的文献求助10
6秒前
6秒前
高高的不悔完成签到,获得积分10
7秒前
迷路易形完成签到,获得积分10
7秒前
夏天发布了新的文献求助10
7秒前
7秒前
Akim应助linmo采纳,获得10
8秒前
midokaori发布了新的文献求助10
9秒前
派大星发布了新的文献求助10
9秒前
霸气忙内发布了新的文献求助10
9秒前
yummy完成签到,获得积分10
10秒前
10秒前
ghpi完成签到,获得积分10
10秒前
小小阿杰完成签到,获得积分10
11秒前
12秒前
12秒前
负责的蘑菇完成签到 ,获得积分10
13秒前
13秒前
14秒前
15秒前
Jasper应助狂野的山雁采纳,获得10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271