Associations between multiple heavy metals exposure and neural damage biomarkers in welders: A cross-sectional study

尿 生理学 内科学 医学 化学
作者
Luli Wu,Fengtao Cui,Shixuan Zhang,Xinping Ding,Wei Gao,Li Chen,Junxiang Ma,Piye Niu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:869: 161812-161812 被引量:17
标识
DOI:10.1016/j.scitotenv.2023.161812
摘要

Both occupational and environmental exposure to heavy metals are associated with various neurodegenerative diseases. However, limited evidence is available on the potential effects of exposure to metallic mixtures and neural damage. This study aimed to evaluate the association between metal mixtures in urine and neural damage biomarkers in welders. In this cross-sectional study, a total of 186 workers were recruited from steel mills. Twenty-three metals in urine were measured by inductively coupled plasma mass spectrometry. Serum neural damage biomarkers, including neurofilament light chain (NfL), sphingosine-1-phosphate (S1P), prolactin (PRL), and dopamine (DA) were detected using enzyme-linked immunosorbent assay kits. Multivariable linear regression, Bayesian kernel machine regression (BKMR), and Quantile g-computation (QG-C) were employed to estimate the association between metals exposure and neural damage biomarkers. Inverted u-shaped associations of nickel with NfL, S1P, and DA were observed in the BKMR model. A non-linear relationship was also found between Fe and PRL. Urinary cobalt was positively associated with serum PRL and had the strongest positive weights in the QG-C model. Urinary lead was associated with higher serum S1P levels. We also found the interaction among nickel, zinc, arsenic, strontium, iron, and lead with the neural damage biomarkers. This study provides new evidence of a direct association between metal mixture exposure and the serum biomarkers of neural damage. Several metals Ni, Co, Pb, Sr, As and Fe, may have adverse effects on the nervous system, while Zn may have neuroprotective effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
潘润朗完成签到,获得积分10
1秒前
无花完成签到 ,获得积分10
2秒前
2秒前
李娟发布了新的文献求助10
2秒前
超帅无血发布了新的文献求助10
2秒前
zt发布了新的文献求助10
3秒前
善学以致用应助湛湛采纳,获得10
3秒前
背后的雪卉应助风吹而过采纳,获得10
3秒前
4秒前
yyyy完成签到,获得积分20
4秒前
5秒前
开心硬币发布了新的文献求助10
5秒前
蓝天应助Isabella采纳,获得10
6秒前
6秒前
LYY完成签到,获得积分10
7秒前
7秒前
Akim应助心灵美凝竹采纳,获得10
7秒前
Akim应助zzj512682701采纳,获得10
7秒前
涛涛tt发布了新的文献求助10
8秒前
无极微光应助Heartar采纳,获得20
8秒前
8秒前
科研通AI6应助大鹏采纳,获得50
8秒前
8秒前
luoliping发布了新的文献求助10
9秒前
MiRoRo完成签到 ,获得积分10
9秒前
dddd发布了新的文献求助10
10秒前
zzzzw发布了新的文献求助10
10秒前
碧蓝的睫毛完成签到,获得积分10
11秒前
风清扬应助xiaoyi采纳,获得30
11秒前
琴宝爱吃QQ星完成签到,获得积分10
12秒前
S1Mon发布了新的文献求助10
13秒前
xx发布了新的文献求助10
13秒前
踏实善若发布了新的文献求助10
13秒前
CipherSage应助满天星采纳,获得10
14秒前
14秒前
共享精神应助忧郁凌波采纳,获得10
15秒前
桐桐应助dddd采纳,获得10
15秒前
SciGPT应助小杨采纳,获得10
15秒前
务实猕猴桃完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588804
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14788829
捐赠科研通 4626418
什么是DOI,文献DOI怎么找? 2531970
邀请新用户注册赠送积分活动 1500530
关于科研通互助平台的介绍 1468329