Associations between multiple heavy metals exposure and neural damage biomarkers in welders: A cross-sectional study

尿 生理学 内科学 医学 化学
作者
Luli Wu,Fengtao Cui,Shixuan Zhang,Xinping Ding,Wei Gao,Li Chen,Junxiang Ma,Piye Niu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:869: 161812-161812 被引量:17
标识
DOI:10.1016/j.scitotenv.2023.161812
摘要

Both occupational and environmental exposure to heavy metals are associated with various neurodegenerative diseases. However, limited evidence is available on the potential effects of exposure to metallic mixtures and neural damage. This study aimed to evaluate the association between metal mixtures in urine and neural damage biomarkers in welders. In this cross-sectional study, a total of 186 workers were recruited from steel mills. Twenty-three metals in urine were measured by inductively coupled plasma mass spectrometry. Serum neural damage biomarkers, including neurofilament light chain (NfL), sphingosine-1-phosphate (S1P), prolactin (PRL), and dopamine (DA) were detected using enzyme-linked immunosorbent assay kits. Multivariable linear regression, Bayesian kernel machine regression (BKMR), and Quantile g-computation (QG-C) were employed to estimate the association between metals exposure and neural damage biomarkers. Inverted u-shaped associations of nickel with NfL, S1P, and DA were observed in the BKMR model. A non-linear relationship was also found between Fe and PRL. Urinary cobalt was positively associated with serum PRL and had the strongest positive weights in the QG-C model. Urinary lead was associated with higher serum S1P levels. We also found the interaction among nickel, zinc, arsenic, strontium, iron, and lead with the neural damage biomarkers. This study provides new evidence of a direct association between metal mixture exposure and the serum biomarkers of neural damage. Several metals Ni, Co, Pb, Sr, As and Fe, may have adverse effects on the nervous system, while Zn may have neuroprotective effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喃喃完成签到,获得积分10
1秒前
害羞的慕晴完成签到,获得积分10
1秒前
awedfa完成签到,获得积分10
1秒前
洁净诗槐发布了新的文献求助10
2秒前
喃喃发布了新的文献求助10
3秒前
大力的问蕊完成签到,获得积分10
3秒前
默默的过客完成签到,获得积分10
3秒前
222123发布了新的文献求助10
5秒前
5秒前
6秒前
Ting完成签到,获得积分10
7秒前
赘婿应助swh采纳,获得10
8秒前
CipherSage应助Bao采纳,获得10
8秒前
8秒前
选课发布了新的文献求助10
8秒前
9秒前
9秒前
ye先生完成签到,获得积分10
10秒前
丘比特应助洁净诗槐采纳,获得10
10秒前
lmm123022完成签到,获得积分10
10秒前
星辰大海应助duzhi采纳,获得10
11秒前
香蕉觅云应助Han采纳,获得10
11秒前
Xixi_yuan发布了新的文献求助10
11秒前
Glowworm发布了新的文献求助10
12秒前
守望阳光1完成签到,获得积分10
12秒前
卡卡发布了新的文献求助10
12秒前
科研通AI6应助榴莲麦旋风采纳,获得10
13秒前
yenist完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
SciGPT应助大力的夏山采纳,获得10
14秒前
wei发布了新的文献求助30
14秒前
二号宋关注了科研通微信公众号
15秒前
15秒前
alone完成签到,获得积分20
16秒前
猪猪侠发布了新的文献求助10
17秒前
17秒前
alone发布了新的文献求助10
19秒前
一个兜兜发布了新的文献求助10
21秒前
领导范儿应助wuaaaaa_L采纳,获得10
21秒前
山月靡隐完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469254
求助须知:如何正确求助?哪些是违规求助? 4572366
关于积分的说明 14335510
捐赠科研通 4499281
什么是DOI,文献DOI怎么找? 2464986
邀请新用户注册赠送积分活动 1453533
关于科研通互助平台的介绍 1428051