Associations between multiple heavy metals exposure and neural damage biomarkers in welders: A cross-sectional study

尿 生理学 内科学 医学 化学
作者
Luli Wu,Fengtao Cui,Shixuan Zhang,Xinping Ding,Wei Gao,Li Chen,Junxiang Ma,Piye Niu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:869: 161812-161812 被引量:17
标识
DOI:10.1016/j.scitotenv.2023.161812
摘要

Both occupational and environmental exposure to heavy metals are associated with various neurodegenerative diseases. However, limited evidence is available on the potential effects of exposure to metallic mixtures and neural damage. This study aimed to evaluate the association between metal mixtures in urine and neural damage biomarkers in welders. In this cross-sectional study, a total of 186 workers were recruited from steel mills. Twenty-three metals in urine were measured by inductively coupled plasma mass spectrometry. Serum neural damage biomarkers, including neurofilament light chain (NfL), sphingosine-1-phosphate (S1P), prolactin (PRL), and dopamine (DA) were detected using enzyme-linked immunosorbent assay kits. Multivariable linear regression, Bayesian kernel machine regression (BKMR), and Quantile g-computation (QG-C) were employed to estimate the association between metals exposure and neural damage biomarkers. Inverted u-shaped associations of nickel with NfL, S1P, and DA were observed in the BKMR model. A non-linear relationship was also found between Fe and PRL. Urinary cobalt was positively associated with serum PRL and had the strongest positive weights in the QG-C model. Urinary lead was associated with higher serum S1P levels. We also found the interaction among nickel, zinc, arsenic, strontium, iron, and lead with the neural damage biomarkers. This study provides new evidence of a direct association between metal mixture exposure and the serum biomarkers of neural damage. Several metals Ni, Co, Pb, Sr, As and Fe, may have adverse effects on the nervous system, while Zn may have neuroprotective effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行者在远方完成签到 ,获得积分10
刚刚
32429606完成签到 ,获得积分10
1秒前
怡然的鱼发布了新的文献求助10
1秒前
历史真相发布了新的文献求助10
2秒前
风中元瑶完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
刘雪晴完成签到 ,获得积分10
9秒前
勾勾1991完成签到,获得积分10
10秒前
整齐的大开完成签到 ,获得积分0
10秒前
lulu完成签到 ,获得积分10
11秒前
xinxiangshicheng完成签到 ,获得积分10
12秒前
gf完成签到 ,获得积分10
18秒前
简奥斯汀完成签到 ,获得积分10
19秒前
zyx完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
23秒前
sora完成签到,获得积分10
24秒前
iiinns发布了新的文献求助10
24秒前
112222完成签到 ,获得积分10
25秒前
qqqdewq完成签到,获得积分10
25秒前
天天快乐应助历史真相采纳,获得10
25秒前
悠然完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
28秒前
28秒前
赫连人杰完成签到 ,获得积分10
31秒前
31秒前
iiinns完成签到,获得积分10
33秒前
村头保安完成签到,获得积分10
34秒前
怡然的鱼完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
38秒前
Murphy~完成签到,获得积分10
39秒前
一白完成签到 ,获得积分10
40秒前
酷酷的紫南完成签到 ,获得积分10
41秒前
喵喵666完成签到,获得积分10
43秒前
威威发布了新的文献求助10
44秒前
乐乐呀完成签到 ,获得积分10
44秒前
专注笑珊完成签到,获得积分10
44秒前
Kelly1426完成签到,获得积分10
45秒前
júpiter完成签到,获得积分10
46秒前
Jackie完成签到 ,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869297
关于积分的说明 15108591
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536417
关于科研通互助平台的介绍 1494839