清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Associations between multiple heavy metals exposure and neural damage biomarkers in welders: A cross-sectional study

尿 生理学 内科学 医学 化学
作者
Luli Wu,Fengtao Cui,Shixuan Zhang,Xinping Ding,Wei Gao,Li Chen,Junxiang Ma,Piye Niu
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:869: 161812-161812 被引量:17
标识
DOI:10.1016/j.scitotenv.2023.161812
摘要

Both occupational and environmental exposure to heavy metals are associated with various neurodegenerative diseases. However, limited evidence is available on the potential effects of exposure to metallic mixtures and neural damage. This study aimed to evaluate the association between metal mixtures in urine and neural damage biomarkers in welders. In this cross-sectional study, a total of 186 workers were recruited from steel mills. Twenty-three metals in urine were measured by inductively coupled plasma mass spectrometry. Serum neural damage biomarkers, including neurofilament light chain (NfL), sphingosine-1-phosphate (S1P), prolactin (PRL), and dopamine (DA) were detected using enzyme-linked immunosorbent assay kits. Multivariable linear regression, Bayesian kernel machine regression (BKMR), and Quantile g-computation (QG-C) were employed to estimate the association between metals exposure and neural damage biomarkers. Inverted u-shaped associations of nickel with NfL, S1P, and DA were observed in the BKMR model. A non-linear relationship was also found between Fe and PRL. Urinary cobalt was positively associated with serum PRL and had the strongest positive weights in the QG-C model. Urinary lead was associated with higher serum S1P levels. We also found the interaction among nickel, zinc, arsenic, strontium, iron, and lead with the neural damage biomarkers. This study provides new evidence of a direct association between metal mixture exposure and the serum biomarkers of neural damage. Several metals Ni, Co, Pb, Sr, As and Fe, may have adverse effects on the nervous system, while Zn may have neuroprotective effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzy发布了新的文献求助10
2秒前
6秒前
xun发布了新的文献求助10
10秒前
1437594843完成签到 ,获得积分10
17秒前
wenbinvan完成签到,获得积分0
18秒前
彭于晏应助CDX采纳,获得10
30秒前
woods完成签到,获得积分10
31秒前
Liuruijia完成签到 ,获得积分10
38秒前
1分钟前
xun完成签到,获得积分20
1分钟前
1947188918完成签到,获得积分10
1分钟前
creep2020完成签到,获得积分10
1分钟前
yxdjzwx完成签到,获得积分10
1分钟前
BryanCh完成签到,获得积分10
2分钟前
2分钟前
manmanzhong完成签到 ,获得积分10
2分钟前
游大达完成签到,获得积分0
2分钟前
Bake完成签到 ,获得积分10
3分钟前
dydydyd完成签到,获得积分10
3分钟前
ybheart完成签到,获得积分0
3分钟前
Xiaoqiang给Xiaoqiang的求助进行了留言
3分钟前
刚子完成签到 ,获得积分10
3分钟前
执意完成签到 ,获得积分10
3分钟前
3分钟前
CDX发布了新的文献求助10
4分钟前
4分钟前
无私雅柏完成签到 ,获得积分10
4分钟前
CDX完成签到 ,获得积分10
4分钟前
Freddy完成签到 ,获得积分10
4分钟前
5分钟前
咯咯咯完成签到 ,获得积分10
5分钟前
科研小白完成签到 ,获得积分10
5分钟前
5分钟前
digger2023完成签到 ,获得积分10
5分钟前
5分钟前
Xiaoqiang发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
taster完成签到,获得积分10
6分钟前
小米的稻田完成签到 ,获得积分10
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910448
求助须知:如何正确求助?哪些是违规求助? 4186299
关于积分的说明 12999283
捐赠科研通 3953727
什么是DOI,文献DOI怎么找? 2168062
邀请新用户注册赠送积分活动 1186535
关于科研通互助平台的介绍 1093722