Associations between multiple heavy metals exposure and neural damage biomarkers in welders: A cross-sectional study

尿 生理学 内科学 医学 化学
作者
Luli Wu,Fengtao Cui,Shixuan Zhang,Xinping Ding,Wei Gao,Li Chen,Junxiang Ma,Piye Niu
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:869: 161812-161812 被引量:14
标识
DOI:10.1016/j.scitotenv.2023.161812
摘要

Both occupational and environmental exposure to heavy metals are associated with various neurodegenerative diseases. However, limited evidence is available on the potential effects of exposure to metallic mixtures and neural damage. This study aimed to evaluate the association between metal mixtures in urine and neural damage biomarkers in welders. In this cross-sectional study, a total of 186 workers were recruited from steel mills. Twenty-three metals in urine were measured by inductively coupled plasma mass spectrometry. Serum neural damage biomarkers, including neurofilament light chain (NfL), sphingosine-1-phosphate (S1P), prolactin (PRL), and dopamine (DA) were detected using enzyme-linked immunosorbent assay kits. Multivariable linear regression, Bayesian kernel machine regression (BKMR), and Quantile g-computation (QG-C) were employed to estimate the association between metals exposure and neural damage biomarkers. Inverted u-shaped associations of nickel with NfL, S1P, and DA were observed in the BKMR model. A non-linear relationship was also found between Fe and PRL. Urinary cobalt was positively associated with serum PRL and had the strongest positive weights in the QG-C model. Urinary lead was associated with higher serum S1P levels. We also found the interaction among nickel, zinc, arsenic, strontium, iron, and lead with the neural damage biomarkers. This study provides new evidence of a direct association between metal mixture exposure and the serum biomarkers of neural damage. Several metals Ni, Co, Pb, Sr, As and Fe, may have adverse effects on the nervous system, while Zn may have neuroprotective effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏青荷发布了新的文献求助10
刚刚
白杨完成签到 ,获得积分10
刚刚
辛勤的乌完成签到,获得积分10
1秒前
奋斗的灵凡完成签到,获得积分10
2秒前
草莓大恐龙完成签到,获得积分10
3秒前
索多倍完成签到 ,获得积分10
3秒前
3秒前
hang完成签到,获得积分10
5秒前
Inanopig完成签到,获得积分10
5秒前
5秒前
shy完成签到,获得积分10
6秒前
Leo完成签到,获得积分10
7秒前
E_Y完成签到,获得积分10
7秒前
应樱完成签到 ,获得积分10
8秒前
雾影觅光完成签到,获得积分10
8秒前
英姑应助1122采纳,获得10
8秒前
xiao完成签到 ,获得积分10
9秒前
HYH完成签到,获得积分10
9秒前
NexusExplorer应助小底采纳,获得10
10秒前
yam001发布了新的文献求助10
10秒前
11秒前
双面人完成签到,获得积分10
11秒前
12秒前
13秒前
heyan完成签到,获得积分10
13秒前
科目三应助Huangmeihao采纳,获得10
13秒前
小张发布了新的文献求助10
15秒前
自信的汉堡完成签到,获得积分10
15秒前
义气缘分完成签到,获得积分10
16秒前
XSB完成签到,获得积分10
16秒前
夏青荷发布了新的文献求助10
17秒前
Vincent完成签到,获得积分10
17秒前
pluto应助Desamin采纳,获得10
17秒前
研友_nxeAlZ发布了新的文献求助10
19秒前
19秒前
跳跳糖完成签到 ,获得积分10
21秒前
阳光总在风雨后完成签到,获得积分10
22秒前
24秒前
忆寒应助勤奋的夜春采纳,获得10
25秒前
HYH发布了新的文献求助10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736925
求助须知:如何正确求助?哪些是违规求助? 3280839
关于积分的说明 10021396
捐赠科研通 2997494
什么是DOI,文献DOI怎么找? 1644637
邀请新用户注册赠送积分活动 782085
科研通“疑难数据库(出版商)”最低求助积分说明 749707