已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Associations between multiple heavy metals exposure and neural damage biomarkers in welders: A cross-sectional study

尿 生理学 内科学 医学 化学
作者
Luli Wu,Fengtao Cui,Shixuan Zhang,Xinping Ding,Wei Gao,Li Chen,Junxiang Ma,Piye Niu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:869: 161812-161812 被引量:14
标识
DOI:10.1016/j.scitotenv.2023.161812
摘要

Both occupational and environmental exposure to heavy metals are associated with various neurodegenerative diseases. However, limited evidence is available on the potential effects of exposure to metallic mixtures and neural damage. This study aimed to evaluate the association between metal mixtures in urine and neural damage biomarkers in welders. In this cross-sectional study, a total of 186 workers were recruited from steel mills. Twenty-three metals in urine were measured by inductively coupled plasma mass spectrometry. Serum neural damage biomarkers, including neurofilament light chain (NfL), sphingosine-1-phosphate (S1P), prolactin (PRL), and dopamine (DA) were detected using enzyme-linked immunosorbent assay kits. Multivariable linear regression, Bayesian kernel machine regression (BKMR), and Quantile g-computation (QG-C) were employed to estimate the association between metals exposure and neural damage biomarkers. Inverted u-shaped associations of nickel with NfL, S1P, and DA were observed in the BKMR model. A non-linear relationship was also found between Fe and PRL. Urinary cobalt was positively associated with serum PRL and had the strongest positive weights in the QG-C model. Urinary lead was associated with higher serum S1P levels. We also found the interaction among nickel, zinc, arsenic, strontium, iron, and lead with the neural damage biomarkers. This study provides new evidence of a direct association between metal mixture exposure and the serum biomarkers of neural damage. Several metals Ni, Co, Pb, Sr, As and Fe, may have adverse effects on the nervous system, while Zn may have neuroprotective effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈完成签到 ,获得积分10
1秒前
花痴的易真完成签到,获得积分10
1秒前
以乐完成签到 ,获得积分10
1秒前
GXY完成签到,获得积分10
1秒前
哈哈哈完成签到 ,获得积分10
2秒前
XLT发布了新的文献求助10
2秒前
二行完成签到 ,获得积分10
2秒前
luroa完成签到 ,获得积分10
2秒前
innnnni7777完成签到 ,获得积分10
2秒前
云上人完成签到 ,获得积分10
3秒前
天天快乐应助Pluto采纳,获得10
3秒前
务实的焦完成签到 ,获得积分10
3秒前
王博洋完成签到,获得积分10
5秒前
Anna完成签到 ,获得积分10
7秒前
xth完成签到 ,获得积分10
7秒前
lenny发布了新的文献求助10
8秒前
燕子完成签到 ,获得积分10
9秒前
innnnni7777关注了科研通微信公众号
9秒前
wing完成签到 ,获得积分10
9秒前
嘟嘟嘟嘟完成签到,获得积分10
10秒前
guoze完成签到,获得积分10
12秒前
123完成签到 ,获得积分10
13秒前
凯撒的归凯撒完成签到 ,获得积分10
14秒前
15秒前
15秒前
企鹅吃圣代完成签到 ,获得积分10
17秒前
pupi完成签到 ,获得积分10
18秒前
www发布了新的文献求助30
18秒前
高高的笑柳完成签到 ,获得积分10
18秒前
772829完成签到 ,获得积分10
18秒前
远方发布了新的文献求助10
19秒前
寻绿完成签到,获得积分10
19秒前
沉静龙猫发布了新的文献求助10
20秒前
禾叶完成签到 ,获得积分10
20秒前
22222发布了新的文献求助10
21秒前
缓慢的语蕊完成签到 ,获得积分10
21秒前
21秒前
江南烟雨如笙完成签到 ,获得积分10
21秒前
21秒前
蔓越莓发布了新的文献求助10
22秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234449
求助须知:如何正确求助?哪些是违规求助? 2880760
关于积分的说明 8216976
捐赠科研通 2548347
什么是DOI,文献DOI怎么找? 1377713
科研通“疑难数据库(出版商)”最低求助积分说明 647944
邀请新用户注册赠送积分活动 623304