Writing by hand or digitally in first grade: Effects on rate of learning to compose text

笔迹 拼写 计算机科学 复杂度 标点符号 自然语言处理 叙述的 作文(语言) 人工智能 模态(人机交互) 语音识别 语言学 社会科学 哲学 社会学
作者
Eivor Finset Spilling,Vibeke Rønneberg,Wenke Mork Rogne,Jens Roeser,Mark Torrance
出处
期刊:Computers & education [Elsevier]
卷期号:198: 104755-104755 被引量:2
标识
DOI:10.1016/j.compedu.2023.104755
摘要

In a natural experiment we compared development of writing composition skill in five Norwegian first-grade classes in which children (N = 90) learned to compose text by handwriting on paper and in five classes in which children (N = 91) learned by typing on a digital tablet using software that additionally provided read-back via text-to-speech synthesis. Children completed narrative composition probe tasks at five timepoints over eight months, writing in the modality in which they were learning. Students' narratives were evaluated in terms of a range of text features capturing both transcription accuracy (spelling, spacing, punctuation), and syntactic and compositional sophistication. Statistical analysis was by Bayesian modelling allowing for robust inference in the presence or absence of a modality effect. Children showed improvement in text length, syntactic accuracy and complexity, and narrative sophistication. However, rate of improvement was unaffected by modality. Spelling and spacing, which were directly supported by read-back functionality, improved just in the handwriting condition, with better performance but no improvement in the digital condition. Our findings provide evidence against claims that either learning to write by hand or learning to write digitally (typing supported by text-to-speech) are inherently better for students' learning of written composition, at least across their first year of writing instruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助化身孤岛的鲸采纳,获得10
刚刚
李爱国应助无限曼易采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
大模型应助悦耳听芹采纳,获得10
2秒前
Akim应助无辜的鼠标采纳,获得20
2秒前
ZMl发布了新的文献求助10
2秒前
3秒前
tj发布了新的文献求助10
3秒前
3秒前
3秒前
向北发布了新的文献求助10
3秒前
豆觉子发布了新的文献求助10
4秒前
热情的大地完成签到,获得积分20
4秒前
4秒前
收费完成签到,获得积分10
5秒前
Kiry完成签到 ,获得积分10
5秒前
5秒前
共享精神应助臭臭采纳,获得10
6秒前
BLAOOW完成签到,获得积分10
6秒前
6秒前
6秒前
spc68应助Marshall采纳,获得10
6秒前
7秒前
Xltox发布了新的文献求助10
7秒前
zzz发布了新的文献求助100
7秒前
8秒前
8秒前
鲜艳的慕晴完成签到,获得积分20
8秒前
隐形曼青应助Andy采纳,获得30
8秒前
8秒前
ding应助cjh采纳,获得10
8秒前
脑洞疼应助向北采纳,获得10
9秒前
9秒前
12138完成签到,获得积分10
9秒前
9秒前
默默的芙发布了新的文献求助10
9秒前
霸气的怜珊完成签到,获得积分10
9秒前
10秒前
廖匪发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994