Writing by hand or digitally in first grade: Effects on rate of learning to compose text

笔迹 拼写 计算机科学 复杂度 标点符号 自然语言处理 叙述的 作文(语言) 人工智能 模态(人机交互) 语音识别 语言学 社会科学 哲学 社会学
作者
Eivor Finset Spilling,Vibeke Rønneberg,Wenke Mork Rogne,Jens Roeser,Mark Torrance
出处
期刊:Computers & education [Elsevier]
卷期号:198: 104755-104755 被引量:2
标识
DOI:10.1016/j.compedu.2023.104755
摘要

In a natural experiment we compared development of writing composition skill in five Norwegian first-grade classes in which children (N = 90) learned to compose text by handwriting on paper and in five classes in which children (N = 91) learned by typing on a digital tablet using software that additionally provided read-back via text-to-speech synthesis. Children completed narrative composition probe tasks at five timepoints over eight months, writing in the modality in which they were learning. Students' narratives were evaluated in terms of a range of text features capturing both transcription accuracy (spelling, spacing, punctuation), and syntactic and compositional sophistication. Statistical analysis was by Bayesian modelling allowing for robust inference in the presence or absence of a modality effect. Children showed improvement in text length, syntactic accuracy and complexity, and narrative sophistication. However, rate of improvement was unaffected by modality. Spelling and spacing, which were directly supported by read-back functionality, improved just in the handwriting condition, with better performance but no improvement in the digital condition. Our findings provide evidence against claims that either learning to write by hand or learning to write digitally (typing supported by text-to-speech) are inherently better for students' learning of written composition, at least across their first year of writing instruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Xx.完成签到,获得积分10
3秒前
星辰大海应助内向凌兰采纳,获得10
3秒前
3秒前
wuzhizhiya完成签到,获得积分10
4秒前
5秒前
rudjs发布了新的文献求助10
5秒前
8秒前
Ava应助何糖采纳,获得10
8秒前
桐桐应助美丽的芷烟采纳,获得10
8秒前
野子完成签到,获得积分10
9秒前
情怀应助小D采纳,获得30
10秒前
yuan发布了新的文献求助10
10秒前
berry发布了新的文献求助10
11秒前
11秒前
淡淡采白发布了新的文献求助10
12秒前
思源应助勤恳慕蕊采纳,获得10
12秒前
知犯何逆完成签到 ,获得积分10
13秒前
啊哈完成签到,获得积分10
13秒前
14秒前
14秒前
Draven完成签到 ,获得积分10
14秒前
tmpstlml发布了新的文献求助10
15秒前
张红梨完成签到,获得积分10
15秒前
迷迷完成签到,获得积分20
16秒前
16秒前
科研通AI2S应助chen采纳,获得10
17秒前
穿山甲坐飞机完成签到 ,获得积分10
17秒前
18秒前
美丽的芷烟给美丽的芷烟的求助进行了留言
18秒前
科研通AI5应助经年采纳,获得10
18秒前
18秒前
勤劳晓亦应助木头人采纳,获得10
19秒前
科研通AI5应助想瘦的海豹采纳,获得10
19秒前
20秒前
科研通AI5应助adazbd采纳,获得10
20秒前
bkagyin应助皮皮桂采纳,获得10
20秒前
21秒前
重要的哈密瓜完成签到 ,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808