Hofmeister Effect Assisted Dual‐Dynamic‐Bond Cross‐Linked Organohydrogels with Enhanced Ionic Conductivity and Balanced Mechanical Properties for Flexible Sensors

材料科学 电导率 离子电导率 韧性 聚合物 复合材料 离子键合 纳米技术 离子 电解质 物理化学 化学 电极 物理 量子力学
作者
Ruyue Guo,Yan Bao,Xi Zheng,Wenbo Zhang,Chao Liu,Jie Chen,Jiachen Xu,Luxuan Wang,Jianzhong Ma
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (12) 被引量:60
标识
DOI:10.1002/adfm.202213283
摘要

Abstract For soft electronic applications, the simultaneous incorporation of conductivity and mechanical robustness remains a grand constraint, not to mention being able to operate at wide temperatures ranges. Herein, a novel conductive platform is proposed by designing skin‐inspired ionic organohydrogels based on Hofmeister effect and glycerol/water system, which simultaneously realize balanced conductivity, mechanical strength, and versatile properties. The comprehensive performances are broadly and simultaneously altered via tuning the aggregation states of polymer chains by kosmotropes or chaotropes. With various ions, the conductivity and mechanical strength are continuously in situ modulated over a large window: conductivity from 0.08 to 4.8 S m −1 , strength from 0.01 to 17.30 MPa, toughness from 5.4 to 9236.9 kJ m −3 , and modulus from 5.1 to 2258.9 kPa. The ion transport process is inseparable from the changes of water content and pore structures caused by cross‐linking density. Meanwhile, the mechanical properties greatly depend on the densification or loosing of polymer chains and crystalline domains. Furthermore, oil/water system exhibits low temperature tolerance at ≈−65–15 °C and long‐term stability. Finally, the champion organohydrogels are applied as wearable electronic sensors and artificial skins. The mechanism proposed in this work advances the understanding of the ions contribution to organohydrogels for electronic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xg发布了新的文献求助10
1秒前
2秒前
Tophet完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
FashionBoy应助落落采纳,获得10
4秒前
活力的青枫完成签到 ,获得积分10
4秒前
苏素肃发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
空禅yew发布了新的文献求助10
6秒前
汉堡包应助花开的声音1217采纳,获得10
6秒前
ying发布了新的文献求助10
6秒前
animenz完成签到,获得积分10
7秒前
tY发布了新的文献求助10
8秒前
OJL发布了新的文献求助10
8秒前
8秒前
8秒前
柒柒完成签到,获得积分10
8秒前
丘比特应助111采纳,获得10
9秒前
10秒前
10秒前
XShu完成签到,获得积分20
10秒前
xx完成签到 ,获得积分10
11秒前
羊知鱼完成签到,获得积分10
12秒前
公茂源发布了新的文献求助30
12秒前
搞怪不言发布了新的文献求助10
13秒前
DDDD完成签到,获得积分10
13秒前
陈莹发布了新的文献求助10
13秒前
执着的幻柏完成签到,获得积分10
13秒前
14秒前
14秒前
苏素肃完成签到,获得积分10
14秒前
隐形曼青应助sw98318采纳,获得10
15秒前
wangyanwxy发布了新的文献求助10
16秒前
16秒前
搜集达人应助WTF采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808