Roughness detection method based on image multi-features

触针 人工智能 计算机视觉 计算机科学 支持向量机 局部二进制模式 表面光洁度 特征提取 模式识别(心理学) 表面粗糙度 核(代数) 主成分分析 数学 图像(数学) 工程类 材料科学 直方图 组合数学 机械工程 复合材料
作者
Zengren Pan,Yanhui Liu,Zhiwei Li,Qiwen Xun,Ying Wu
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part E: Journal Of Process Mechanical Engineering [SAGE Publishing]
卷期号:: 095440892311549-095440892311549
标识
DOI:10.1177/09544089231154959
摘要

Roughness was one of the most visual manifestations of the surface quality of metal parts. It affected the performance and life of the parts. Accurate and efficient roughness grade detection technology was of great significance to smart manufacturing. Traditional machine shops often used roughness comparison sample blocks and stylus profilers to check roughness. However, there were disadvantages such as slow detection speed and high influence by human factors. As a non-destructive testing technique, optical imaging gad already demonstrated to be an effective roughness inspection method. In this paper, a roughness detection approach based on image multi-features was proposed, using part surface images as the research object. First, gray level co-occurrence matrix (GLCM), Gabor transform, and local binary patterns (LBP) were used for the extraction of image texture features. After using principal components analysis to reduce the dimensionality of texture features, multiple texture features were concatenated to form a multi-feature vector. Finally, the multi-feature vectors were input into the Gaussian radial basis kernel support vector machine to classify the part surface images and thus completed the detection of roughness grade.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助wyr采纳,获得10
刚刚
Ava应助Xu采纳,获得10
刚刚
扶风阁主发布了新的文献求助10
1秒前
1秒前
1秒前
GingerF应助shinn采纳,获得50
2秒前
小杰完成签到 ,获得积分10
2秒前
翊月发布了新的文献求助30
2秒前
香蕉觅云应助单薄紫菜采纳,获得10
2秒前
wanci应助猪猪hero采纳,获得10
3秒前
飞雪之舞完成签到,获得积分10
3秒前
俭朴的半雪完成签到 ,获得积分10
3秒前
3秒前
立军发布了新的文献求助10
3秒前
4秒前
。。。完成签到,获得积分10
5秒前
彭于晏应助中央戏精学院采纳,获得10
5秒前
5秒前
刘欣怡发布了新的文献求助10
7秒前
迅速的雁山完成签到,获得积分10
7秒前
shanshanlaichi完成签到,获得积分20
7秒前
星辰大海应助半截神经病采纳,获得10
8秒前
五公里小战士完成签到,获得积分10
9秒前
YING完成签到,获得积分10
9秒前
9秒前
Wuliu完成签到,获得积分10
9秒前
ED应助小轩窗zst采纳,获得10
9秒前
钇铷完成签到,获得积分10
9秒前
sys发布了新的文献求助10
10秒前
11秒前
zz完成签到,获得积分20
12秒前
clairr完成签到,获得积分10
12秒前
科研通AI2S应助ocean采纳,获得10
12秒前
英俊的铭应助qianmu采纳,获得10
13秒前
13秒前
14秒前
杳鸢应助顾闭月采纳,获得30
14秒前
Barry发布了新的文献求助10
15秒前
16秒前
万能图书馆应助刘欣怡采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950900
求助须知:如何正确求助?哪些是违规求助? 3496263
关于积分的说明 11081235
捐赠科研通 3226738
什么是DOI,文献DOI怎么找? 1783955
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993