Energy efficient path planning for autonomous ground vehicles with ackermann steering

阿克曼函数 运动规划 计算机科学 会合 能源消耗 能量(信号处理) 规划师 无人地面车辆 弹道 路径(计算) 模拟 机器人 实时计算 航天器 人工智能 工程类 航空航天工程 数学 电气工程 反向 程序设计语言 物理 天文 统计 几何学
作者
Haojie Zhang,Yudong Zhang,Chuankai Liu,Zuoyu Zhang
出处
期刊:Robotics and Autonomous Systems [Elsevier]
卷期号:162: 104366-104366 被引量:18
标识
DOI:10.1016/j.robot.2023.104366
摘要

The autonomous ground vehicles have attracted a great deal of attention as viable solutions to a wide variety of military and civilian applications. However, the energy consumption plays a major role in the navigation of autonomous ground vehicles in challenging environments, especially if they are left to operate unattended under limited on-board power, such as planetary exploration, border patrol, etc. The autonomous ground vehicles are expected to perform more tasks more efficiently with limited power in these scenarios. Although plenty of research has developed an effective methodology for generating dynamically feasible and energy efficient trajectories for skid steering or differential steering vehicles, few studies on path planning for ackermann steering autonomous ground vehicles are available. In this study, an energy efficient path planning method with guarantee on completeness is proposed for autonomous ground vehicle with ackermann steering which is based on A∗ search algorithm. Firstly, the energy cost model is established for the autonomous ground vehicle using its kinematic constraints. Then, given the start and goal states, the energy-aware motion primitives are generated offline using the energy cost model to calculate the cost of each primary trajectory. Lastly, the energy efficient path planner is proposed and the analysis for completeness properties is given. The effectiveness of the proposed energy efficient path planner is verified by simulation over 150 randomly generated maps and real vehicle tests. The results show that a small increase in the distance of a path over the distance optimal path can result in a reduction of energy cost by nearly 26.9% in simulation and 21.09% in real test scenario for autonomous ground vehicles with ackermann steering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
周晓睿完成签到 ,获得积分10
3秒前
李JJ完成签到,获得积分10
4秒前
天天快乐应助朱婷采纳,获得10
6秒前
单纯芹菜发布了新的文献求助10
7秒前
xxx完成签到,获得积分10
10秒前
10秒前
11秒前
隐形曼青应助Jimmy Ko采纳,获得10
12秒前
怂怂鼠发布了新的文献求助10
15秒前
周晓睿发布了新的文献求助10
16秒前
16秒前
旺旺大礼包完成签到,获得积分10
18秒前
大个应助swallow采纳,获得10
19秒前
独特觅翠举报333求助涉嫌违规
21秒前
22秒前
ttbear11发布了新的文献求助10
22秒前
QQ完成签到,获得积分10
23秒前
waytrue发布了新的文献求助10
23秒前
hhl完成签到,获得积分10
23秒前
浮游应助小杜采纳,获得10
25秒前
25秒前
26秒前
lily完成签到,获得积分10
26秒前
28秒前
29秒前
waytrue完成签到,获得积分10
29秒前
30秒前
31秒前
独特觅翠举报xxxx求助涉嫌违规
32秒前
研友_VZG7GZ应助科研通管家采纳,获得10
32秒前
乐乐应助科研通管家采纳,获得10
32秒前
彭于晏应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
我是老大应助科研通管家采纳,获得10
32秒前
嘿嘿应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得10
33秒前
慕青应助科研通管家采纳,获得30
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298879
求助须知:如何正确求助?哪些是违规求助? 4447312
关于积分的说明 13842156
捐赠科研通 4332840
什么是DOI,文献DOI怎么找? 2378366
邀请新用户注册赠送积分活动 1373656
关于科研通互助平台的介绍 1339240