Energy efficient path planning for autonomous ground vehicles with ackermann steering

阿克曼函数 运动规划 计算机科学 会合 能源消耗 能量(信号处理) 规划师 无人地面车辆 弹道 路径(计算) 模拟 机器人 实时计算 航天器 人工智能 工程类 航空航天工程 数学 反向 统计 物理 几何学 电气工程 天文 程序设计语言
作者
Haojie Zhang,Yudong Zhang,Chuankai Liu,Zuoyu Zhang
出处
期刊:Robotics and Autonomous Systems [Elsevier]
卷期号:162: 104366-104366 被引量:18
标识
DOI:10.1016/j.robot.2023.104366
摘要

The autonomous ground vehicles have attracted a great deal of attention as viable solutions to a wide variety of military and civilian applications. However, the energy consumption plays a major role in the navigation of autonomous ground vehicles in challenging environments, especially if they are left to operate unattended under limited on-board power, such as planetary exploration, border patrol, etc. The autonomous ground vehicles are expected to perform more tasks more efficiently with limited power in these scenarios. Although plenty of research has developed an effective methodology for generating dynamically feasible and energy efficient trajectories for skid steering or differential steering vehicles, few studies on path planning for ackermann steering autonomous ground vehicles are available. In this study, an energy efficient path planning method with guarantee on completeness is proposed for autonomous ground vehicle with ackermann steering which is based on A∗ search algorithm. Firstly, the energy cost model is established for the autonomous ground vehicle using its kinematic constraints. Then, given the start and goal states, the energy-aware motion primitives are generated offline using the energy cost model to calculate the cost of each primary trajectory. Lastly, the energy efficient path planner is proposed and the analysis for completeness properties is given. The effectiveness of the proposed energy efficient path planner is verified by simulation over 150 randomly generated maps and real vehicle tests. The results show that a small increase in the distance of a path over the distance optimal path can result in a reduction of energy cost by nearly 26.9% in simulation and 21.09% in real test scenario for autonomous ground vehicles with ackermann steering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pqy发布了新的文献求助10
刚刚
脆脆鲨完成签到,获得积分10
1秒前
1秒前
文安完成签到,获得积分10
1秒前
微笑如冰完成签到,获得积分10
2秒前
luo给luo的求助进行了留言
2秒前
晨曦发布了新的文献求助10
2秒前
2秒前
大方小白发布了新的文献求助10
2秒前
细腻沅发布了新的文献求助10
2秒前
科研通AI5应助FFF采纳,获得10
3秒前
3秒前
茉莉完成签到,获得积分10
3秒前
今今发布了新的文献求助10
4秒前
追寻的筝发布了新的文献求助10
4秒前
请叫我风吹麦浪应助Ll采纳,获得10
4秒前
Keming完成签到,获得积分10
4秒前
害羞聋五发布了新的文献求助10
5秒前
tulip发布了新的文献求助10
5秒前
5秒前
5秒前
嘟嘟发布了新的文献求助10
5秒前
6秒前
苏照杭应助jym采纳,获得10
6秒前
6秒前
6秒前
眼睛大又蓝完成签到,获得积分10
6秒前
kangkang完成签到,获得积分10
6秒前
7秒前
7秒前
绵绵完成签到,获得积分10
7秒前
8秒前
Mlwwq完成签到,获得积分10
8秒前
8秒前
小皮蛋儿完成签到,获得积分10
8秒前
lyn发布了新的文献求助10
8秒前
JUSTs0so完成签到,获得积分10
9秒前
失联者完成签到,获得积分10
9秒前
感性的神级完成签到,获得积分10
9秒前
眯眯眼的谷冬完成签到 ,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762