Energy efficient path planning for autonomous ground vehicles with ackermann steering

阿克曼函数 运动规划 计算机科学 会合 能源消耗 能量(信号处理) 规划师 无人地面车辆 弹道 路径(计算) 模拟 机器人 实时计算 航天器 人工智能 工程类 航空航天工程 数学 电气工程 反向 程序设计语言 物理 天文 统计 几何学
作者
Haojie Zhang,Yudong Zhang,Chuankai Liu,Zuoyu Zhang
出处
期刊:Robotics and Autonomous Systems [Elsevier]
卷期号:162: 104366-104366 被引量:18
标识
DOI:10.1016/j.robot.2023.104366
摘要

The autonomous ground vehicles have attracted a great deal of attention as viable solutions to a wide variety of military and civilian applications. However, the energy consumption plays a major role in the navigation of autonomous ground vehicles in challenging environments, especially if they are left to operate unattended under limited on-board power, such as planetary exploration, border patrol, etc. The autonomous ground vehicles are expected to perform more tasks more efficiently with limited power in these scenarios. Although plenty of research has developed an effective methodology for generating dynamically feasible and energy efficient trajectories for skid steering or differential steering vehicles, few studies on path planning for ackermann steering autonomous ground vehicles are available. In this study, an energy efficient path planning method with guarantee on completeness is proposed for autonomous ground vehicle with ackermann steering which is based on A∗ search algorithm. Firstly, the energy cost model is established for the autonomous ground vehicle using its kinematic constraints. Then, given the start and goal states, the energy-aware motion primitives are generated offline using the energy cost model to calculate the cost of each primary trajectory. Lastly, the energy efficient path planner is proposed and the analysis for completeness properties is given. The effectiveness of the proposed energy efficient path planner is verified by simulation over 150 randomly generated maps and real vehicle tests. The results show that a small increase in the distance of a path over the distance optimal path can result in a reduction of energy cost by nearly 26.9% in simulation and 21.09% in real test scenario for autonomous ground vehicles with ackermann steering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助cc采纳,获得10
1秒前
淡定自中发布了新的文献求助10
1秒前
科研通AI6应助kk采纳,获得10
1秒前
山神厘子完成签到,获得积分10
2秒前
3秒前
冷傲的广缘完成签到,获得积分10
3秒前
gaogao完成签到,获得积分10
3秒前
5秒前
CodeCraft应助无情丹秋采纳,获得10
5秒前
sarah发布了新的文献求助20
6秒前
8秒前
8秒前
8秒前
8秒前
四玖玖发布了新的文献求助10
9秒前
sunji发布了新的文献求助10
9秒前
10秒前
10秒前
MchemG应助sensen采纳,获得10
10秒前
11秒前
11秒前
QiuQiu发布了新的文献求助10
12秒前
latata发布了新的文献求助10
12秒前
zt发布了新的文献求助10
13秒前
李魏发布了新的文献求助10
13秒前
Ccwyhk发布了新的文献求助10
13秒前
LDDLleor完成签到,获得积分10
14秒前
14秒前
mmz完成签到 ,获得积分10
15秒前
chen完成签到 ,获得积分10
16秒前
余三心发布了新的文献求助10
16秒前
Lucas应助coollz采纳,获得10
17秒前
beckvanm完成签到,获得积分10
18秒前
仁爱太阳发布了新的文献求助20
18秒前
天天快乐应助大反应釜采纳,获得10
18秒前
栖风完成签到,获得积分10
18秒前
英姑应助渺渺采纳,获得10
19秒前
19秒前
20秒前
传奇3应助苏苏采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588751
求助须知:如何正确求助?哪些是违规求助? 4671674
关于积分的说明 14788516
捐赠科研通 4626078
什么是DOI,文献DOI怎么找? 2531920
邀请新用户注册赠送积分活动 1500505
关于科研通互助平台的介绍 1468329