生物信息学
传统医学
体外
立体化学
生物
化学
医学
生物化学
基因
作者
Danielle Figuerêdo da Silva,Jéssica Lima de Souza,Diego Mota da Costa,David Bacelar Costa,Paulo Otávio Lourenço Moreira,Amanda Luisa da Fonseca,Fernando de Pilla Varotti,Jorddy Neves Cruz,Cleydson B. R. Santos,Clayton Q. Alves,Franco Henrique Andrade Leite,Hugo Neves Brandão
标识
DOI:10.1080/07391102.2023.2173295
摘要
Polygala boliviensis is found in the Brazilian semiarid region. This specie is little chemically and biologically studied. Polygala spp. have different metabolites, especially coumarins. Studies indicate that coumarins have antimalarial potential, denoting the importance of researching new active compounds from plants, since the resistance of Plasmodium strains to conventional therapy has increased. The present study aimed to evaluate the antiplasmodial activity of auraptene and poligalen against a chloroquine-resistant strain of Plasmodium falciparum. Coumarins were isolated from P. boliviensis by open column chromatography and identified by Nuclear Magnetic Resonance Spectroscopy. A cytotoxicity assay was carried out using MTT test, and the in vitro antiplasmodial activity was evaluated using the W2 strain. The antiplasmodial activity results found were IC50=0.171 ± 0.016 for auraptene and 0.164 ± 0.012 for poligalen; the selectivity indexes were 78.71 and 609.76, respectively. Inverse virtual screening in the BRAMMT database by OCTOPUS 1.2 was applied to coumarins to find potential P. falciparum targets and showed higher affinity energy of auraptene for purine nucleoside phosphorylase (PfPNP) and of poligalen for dihydroorotate dehydrogenase (PfDHODH). Molecular Dynamics studies (MD and MM-GBSA) approach were applied to calculate binding energies against selected P. falciparum targets and showed that all coumarins were stable at the binding site during simulations. Furthermore, energies were favorable for complexation. This is the first report of auraptene in P. boliviensis species and of in vitro antiplasmodial activity of auraptene and poligalen. In silico studies indicated that the mechanism of action of coumarins is the inhibition of PfPNP and PfDHODH.Communicated by Ramaswamy H. Sarma
科研通智能强力驱动
Strongly Powered by AbleSci AI