清脆的
滚动圆复制
反式激活crRNA
DNA
核糖核酸
计算生物学
Cas9
引导RNA
生物
遗传学
基因
聚合酶
作者
Sidan Wang,Haojia Li,Kejun Dong,Wan Shu,Jiarui Zhang,Jun Zhang,Rong Zhao,Sitian Wei,Dilu Feng,Xianjin Xiao,Wei Zhang
标识
DOI:10.1016/j.bios.2023.115139
摘要
Point of care testing (POCT) has important clinical significance for the diagnosis and prognosis evaluation of diseases. At present, the biosensor based on CRISPR/Cas12a has become a powerful diagnostic tool due to its high sensitivity. However, CRISPR/Cas12a requires PAM sequence to recognize target double strand and only can recognize specific sequence, so it is not universal. The current RNA detection techniques either lack consideration for specificity and universality, are expensive and difficult, or both. Therefore, it is crucial to create a CRISPR/Cas12a-based RNA detection system that is easy to use, cheap, specific, and universal in order to further its use in molecular diagnostics. Here, we established a DNA circuit-mediated PAM-independent CRISPR/Cas12a coupled PolyA-rolling circle amplification for RNA detection biosensor, namely DCPRBiosensor. The DCPRBiosensor not only functions as a simple, inexpensive, and highly sensitive RNA detection sensor, but it also boasts innovative specificity and universality features. More importantly, DCPRBiosensor removes the PAM restriction of CRISPR/Cas12a. The DCPRBiosensor's detection limit reached 100 aM and it had a linear relationship between 100 aM and 10 pM. We detected four piRNAs to verify the universality and stability of DCPRBiosensor. Then, we verified that DCPRBiosensor has good discrimination ability for single-base mismatch. Finally, we successfully detected piRNA in DLD-1 and HCT-116 cells and urine mixed samples within 4.5 h. In conclusion, we believe that DCPRBiosensor will have a substantial impact on both the development of CRISPR/as12a′s applications and the investigation of the clinical value of piRNA.
科研通智能强力驱动
Strongly Powered by AbleSci AI