Nonexercise machine learning models for maximal oxygen uptake prediction in national population surveys

全国健康与营养检查调查 概化理论 心肺适能 机器学习 人口 计算机科学 均方误差 人工智能 统计 医学 物理疗法 数学 环境卫生
作者
Yuntian Liu,Jeph Herrin,Chenxi Huang,Rohan Khera,Lovedeep Singh Dhingra,Weilai Dong,Bobak J. Mortazavi,Harlan M. Krumholz,Yuan Lu
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:30 (5): 943-952 被引量:2
标识
DOI:10.1093/jamia/ocad035
摘要

Abstract Objective Nonexercise algorithms are cost-effective methods to estimate cardiorespiratory fitness (CRF), but the existing models have limitations in generalizability and predictive power. This study aims to improve the nonexercise algorithms using machine learning (ML) methods and data from US national population surveys. Materials and Methods We used the 1999–2004 data from the National Health and Nutrition Examination Survey (NHANES). Maximal oxygen uptake (VO2 max), measured through a submaximal exercise test, served as the gold standard measure for CRF in this study. We applied multiple ML algorithms to build 2 models: a parsimonious model using commonly available interview and examination data, and an extended model additionally incorporating variables from Dual-Energy X-ray Absorptiometry (DEXA) and standard laboratory tests in clinical practice. Key predictors were identified using Shapley additive explanation (SHAP). Results Among the 5668 NHANES participants in the study population, 49.9% were women and the mean (SD) age was 32.5 years (10.0). The light gradient boosting machine (LightGBM) had the best performance across multiple types of supervised ML algorithms. Compared with the best existing nonexercise algorithms that could be applied to the NHANES, the parsimonious LightGBM model (RMSE: 8.51 ml/kg/min [95% CI: 7.73–9.33]) and the extended LightGBM model (RMSE: 8.26 ml/kg/min [95% CI: 7.44–9.09]) significantly reduced the error by 15% and 12% (P < .001 for both), respectively. Discussion The integration of ML and national data source presents a novel approach for estimating cardiovascular fitness. This method provides valuable insights for cardiovascular disease risk classification and clinical decision-making, ultimately leading to improved health outcomes. Conclusion Our nonexercise models provide improved accuracy in estimating VO2 max within NHANES data as compared to existing nonexercise algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI2S应助三火采纳,获得10
3秒前
3秒前
Theo完成签到,获得积分10
3秒前
四喜丸子发布了新的文献求助10
3秒前
天天快乐应助李洪兵采纳,获得10
5秒前
汉堡包应助celia采纳,获得10
5秒前
王婷完成签到,获得积分10
5秒前
8秒前
Akim应助Fuao采纳,获得10
8秒前
Cheung2121完成签到,获得积分20
11秒前
上官若男应助彬子采纳,获得10
11秒前
伶俐青寒给伶俐青寒的求助进行了留言
12秒前
12秒前
Cheung2121发布了新的文献求助30
13秒前
高高雪枫完成签到,获得积分10
14秒前
14秒前
14秒前
彭于晏应助lalala采纳,获得30
16秒前
泯珉发布了新的文献求助10
18秒前
wenwj9发布了新的文献求助10
19秒前
21秒前
23秒前
23秒前
小菜鸟001应助三火采纳,获得10
24秒前
李洪兵发布了新的文献求助10
26秒前
cxm666完成签到,获得积分10
27秒前
27秒前
蝉蝉发布了新的文献求助10
28秒前
30秒前
30秒前
飞呀完成签到,获得积分10
31秒前
伶俐剑心发布了新的文献求助10
32秒前
李洪兵完成签到,获得积分20
32秒前
潘宋发布了新的文献求助10
33秒前
35秒前
wenwj9完成签到,获得积分10
37秒前
甜乎贝贝完成签到 ,获得积分10
37秒前
Owen应助泯珉采纳,获得10
38秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
Development and Industrialization of Stereoregular Polynorbornenes 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3421217
求助须知:如何正确求助?哪些是违规求助? 3022064
关于积分的说明 8899052
捐赠科研通 2709378
什么是DOI,文献DOI怎么找? 1485684
科研通“疑难数据库(出版商)”最低求助积分说明 686840
邀请新用户注册赠送积分活动 681930