催化作用
甲烷
过程(计算)
二氧化碳重整
选择性
工艺工程
特征(语言学)
生物系统
集合(抽象数据类型)
功能(生物学)
决策树
温室气体
计算机科学
生化工程
化学工程
材料科学
机器学习
化学
合成气
工程类
有机化学
生态学
语言学
哲学
进化生物学
生物
程序设计语言
操作系统
作者
Keerthana Vellayappan,Yifei Yue,Kang Hui Lim,Keyu Cao,Ji Yang Tan,Shuwen Cheng,Tianchang Wang,Terry Z. H. Gani,Iftekhar A. Karimi,Sibudjing Kawi
标识
DOI:10.1016/j.apcatb.2023.122593
摘要
Dry reforming of methane (DRM) is a promising technology for valorizing two potent greenhouse gases, namely CO2 and CH4. Although design principles for active and stable catalysts are well-established, predicting selectivity of DRM over competing side reactions that alter product H2/CO ratio remains challenging. Here, we curate a set of 1638 data points from published literature and train tree regressor models to predict H2/CO ratio as a function of 11 catalyst and process parameters. The CatBoost regressors achieved best prediction performance with R2 = 0.91. Feature importance analysis reveals, in addition to well-known effects of process parameters on DRM performance, the potential roles of Ni particle size and loading in tuning H2/CO ratio independently of reactant conversions. Our exploratory study highlights ability of data-driven ML models to unearth structure-property relationships in heterogeneous catalysis by isolating effects of individual design parameters in a manner that would be difficult to achieve experimentally.
科研通智能强力驱动
Strongly Powered by AbleSci AI