A hybrid steady-state visual evoked response-based brain-computer interface with MEG and EEG

脑-机接口 脑电图 计算机科学 语音识别 人工智能 模式识别(心理学) 神经科学 心理学
作者
Xiang Li,Jingjing Chen,Nanlin Shi,Chen Yang,Puze Gao,Xiaogang Chen,Yijun Wang,Shangkai Gao,Xiaorong Gao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:223: 119736-119736 被引量:17
标识
DOI:10.1016/j.eswa.2023.119736
摘要

While recent developments in electroencephalogram (EEG)-based brain-computer interfaces (BCIs) have enabled a bridge between the brain and external devices with relatively high communication speed, there is still room for improvement. Notably, the phenomenon of "BCI illiteracy," which refers to the 15%–30% of people who struggle to type or control devices using BCI, remains unsolved, limiting the practical application of BCI systems. The EEG-based BCIs performance is constrained by the low-quality scalp EEG signals due to the attenuation and distortion of the skull. To address these limitations, this study proposes a hybrid BCI system combining EEG with magnetoencephalogram (MEG), a neuroimaging technology not influenced by the volume conduction effect, to boost BCI performance by enhancing signal quality. Comparative experiments involving 22 subjects showed that the steady-state visual evoked response (SSVER) from MEG has a wider range of effective bandwidth and higher signal-to-noise ratio than EEG. Moreover, differences in the spectral and spatiotemporal characteristics of MEG and EEG explain better performance. Simultaneous MEG-EEG recording experiments suggested that the hybrid MEG-EEG BCI achieved a significantly higher information transfer rate than either modality alone (hybrid: 312 ± 17 bits/min, MEG: 272 ± 17 bits/min, EEG: 240 ± 27 bits/min). Moreover, the 40-target classification accuracy of "BCI illiterate" increased from 50% to 95% with the help of MEG. These results highlight the methodological advantages of a hybrid MEG-EEG BCI, suggesting a promising paradigm for implementing high-speed BCIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大喵发布了新的文献求助10
1秒前
Gao发布了新的文献求助10
1秒前
白桦林泪发布了新的文献求助10
2秒前
正直莫英发布了新的文献求助10
3秒前
4秒前
5秒前
HLQF完成签到,获得积分10
6秒前
江边鸟完成签到 ,获得积分10
7秒前
hg08完成签到,获得积分10
8秒前
丘比特应助小药同学采纳,获得10
8秒前
烟花应助zz采纳,获得10
10秒前
11秒前
卡卡罗特发布了新的文献求助10
12秒前
正直莫英完成签到,获得积分10
13秒前
黄彤彤关注了科研通微信公众号
13秒前
丁仪发布了新的文献求助10
13秒前
852应助毛毛采纳,获得10
13秒前
xyjf15完成签到,获得积分10
13秒前
卡尔拉完成签到,获得积分10
13秒前
Jasper应助Xylah_Rebecca采纳,获得10
16秒前
16秒前
SYLH应助赵杰采纳,获得10
16秒前
孙燕应助白桦林泪采纳,获得30
17秒前
田様应助白桦林泪采纳,获得10
17秒前
义气冷菱发布了新的文献求助10
17秒前
慕青应助Eleanor采纳,获得10
17秒前
18秒前
kitty完成签到 ,获得积分10
19秒前
李健的粉丝团团长应助Gao采纳,获得10
19秒前
要减肥完成签到,获得积分20
21秒前
22秒前
嘞是举仔发布了新的文献求助10
23秒前
黄彤彤发布了新的文献求助30
28秒前
顾矜应助hanshu采纳,获得10
28秒前
30秒前
31秒前
w1完成签到,获得积分10
31秒前
田様应助沐晴采纳,获得10
32秒前
丘比特应助嘞是举仔采纳,获得10
32秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531910
关于积分的说明 11255394
捐赠科研通 3270563
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809190