A hybrid steady-state visual evoked response-based brain-computer interface with MEG and EEG

脑-机接口 脑电图 计算机科学 语音识别 人工智能 模式识别(心理学) 神经科学 心理学
作者
Xiang Li,Jingjing Chen,Nanlin Shi,Chen Yang,Puze Gao,Xiaogang Chen,Yijun Wang,Shangkai Gao,Xiaorong Gao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:223: 119736-119736 被引量:17
标识
DOI:10.1016/j.eswa.2023.119736
摘要

While recent developments in electroencephalogram (EEG)-based brain-computer interfaces (BCIs) have enabled a bridge between the brain and external devices with relatively high communication speed, there is still room for improvement. Notably, the phenomenon of "BCI illiteracy," which refers to the 15%–30% of people who struggle to type or control devices using BCI, remains unsolved, limiting the practical application of BCI systems. The EEG-based BCIs performance is constrained by the low-quality scalp EEG signals due to the attenuation and distortion of the skull. To address these limitations, this study proposes a hybrid BCI system combining EEG with magnetoencephalogram (MEG), a neuroimaging technology not influenced by the volume conduction effect, to boost BCI performance by enhancing signal quality. Comparative experiments involving 22 subjects showed that the steady-state visual evoked response (SSVER) from MEG has a wider range of effective bandwidth and higher signal-to-noise ratio than EEG. Moreover, differences in the spectral and spatiotemporal characteristics of MEG and EEG explain better performance. Simultaneous MEG-EEG recording experiments suggested that the hybrid MEG-EEG BCI achieved a significantly higher information transfer rate than either modality alone (hybrid: 312 ± 17 bits/min, MEG: 272 ± 17 bits/min, EEG: 240 ± 27 bits/min). Moreover, the 40-target classification accuracy of "BCI illiterate" increased from 50% to 95% with the help of MEG. These results highlight the methodological advantages of a hybrid MEG-EEG BCI, suggesting a promising paradigm for implementing high-speed BCIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
fang应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
山野村夫应助科研通管家采纳,获得10
2秒前
zz应助科研通管家采纳,获得10
2秒前
Singularity应助科研通管家采纳,获得10
2秒前
Singularity应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
赘婿应助nkmenghan采纳,获得10
2秒前
芝麻福福完成签到,获得积分10
2秒前
快乐枫发布了新的文献求助10
2秒前
blue发布了新的文献求助10
3秒前
晚灯君完成签到 ,获得积分10
4秒前
UU发布了新的文献求助10
4秒前
lrll完成签到,获得积分10
6秒前
6秒前
lele完成签到,获得积分10
6秒前
hhh发布了新的文献求助10
9秒前
我要看文献完成签到 ,获得积分10
9秒前
wdd完成签到 ,获得积分10
11秒前
李爱国应助开心薯片采纳,获得10
12秒前
13秒前
Z_yiming发布了新的文献求助10
13秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
15秒前
缥缈一刀发布了新的文献求助10
17秒前
小地蛋完成签到 ,获得积分10
18秒前
感谢大哥的帮助完成签到 ,获得积分10
18秒前
614521完成签到,获得积分10
20秒前
111完成签到,获得积分10
21秒前
王先生完成签到 ,获得积分10
21秒前
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029