A hybrid steady-state visual evoked response-based brain-computer interface with MEG and EEG

脑-机接口 脑电图 计算机科学 语音识别 人工智能 模式识别(心理学) 神经科学 心理学
作者
Xiang Li,Jingjing Chen,Nanlin Shi,Chen Yang,Puze Gao,Xiaogang Chen,Yijun Wang,Shangkai Gao,Xiaorong Gao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:223: 119736-119736 被引量:17
标识
DOI:10.1016/j.eswa.2023.119736
摘要

While recent developments in electroencephalogram (EEG)-based brain-computer interfaces (BCIs) have enabled a bridge between the brain and external devices with relatively high communication speed, there is still room for improvement. Notably, the phenomenon of "BCI illiteracy," which refers to the 15%–30% of people who struggle to type or control devices using BCI, remains unsolved, limiting the practical application of BCI systems. The EEG-based BCIs performance is constrained by the low-quality scalp EEG signals due to the attenuation and distortion of the skull. To address these limitations, this study proposes a hybrid BCI system combining EEG with magnetoencephalogram (MEG), a neuroimaging technology not influenced by the volume conduction effect, to boost BCI performance by enhancing signal quality. Comparative experiments involving 22 subjects showed that the steady-state visual evoked response (SSVER) from MEG has a wider range of effective bandwidth and higher signal-to-noise ratio than EEG. Moreover, differences in the spectral and spatiotemporal characteristics of MEG and EEG explain better performance. Simultaneous MEG-EEG recording experiments suggested that the hybrid MEG-EEG BCI achieved a significantly higher information transfer rate than either modality alone (hybrid: 312 ± 17 bits/min, MEG: 272 ± 17 bits/min, EEG: 240 ± 27 bits/min). Moreover, the 40-target classification accuracy of "BCI illiterate" increased from 50% to 95% with the help of MEG. These results highlight the methodological advantages of a hybrid MEG-EEG BCI, suggesting a promising paradigm for implementing high-speed BCIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的若灵完成签到,获得积分20
1秒前
中和皇极应助瑜瑜采纳,获得10
1秒前
脑洞疼应助阳光的听露采纳,获得10
1秒前
2秒前
ChenYun关注了科研通微信公众号
3秒前
科目三应助俏皮怀梦采纳,获得10
4秒前
宅宅完成签到,获得积分20
4秒前
4秒前
5秒前
huohua完成签到,获得积分10
5秒前
5秒前
6秒前
吴未发布了新的文献求助10
6秒前
无花果应助安慧容采纳,获得10
6秒前
7秒前
小高发布了新的文献求助10
9秒前
科研通AI5应助宅宅采纳,获得30
10秒前
pink发布了新的文献求助30
11秒前
12秒前
12秒前
13秒前
hailang820316发布了新的文献求助50
14秒前
15秒前
TheSilencer完成签到 ,获得积分10
17秒前
FashionBoy应助Cris采纳,获得10
17秒前
GYPP发布了新的文献求助10
18秒前
俏皮怀梦发布了新的文献求助10
18秒前
19秒前
临界应助旧事与九月采纳,获得200
19秒前
FashionBoy应助科研废物采纳,获得10
19秒前
揭谛发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
22秒前
henxi完成签到,获得积分10
22秒前
song完成签到,获得积分20
23秒前
song发布了新的文献求助10
25秒前
Amb1tionG发布了新的文献求助10
26秒前
脑洞疼应助持卿采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544136
求助须知:如何正确求助?哪些是违规求助? 3121336
关于积分的说明 9346650
捐赠科研通 2819436
什么是DOI,文献DOI怎么找? 1550205
邀请新用户注册赠送积分活动 722406
科研通“疑难数据库(出版商)”最低求助积分说明 713239