A hybrid steady-state visual evoked response-based brain-computer interface with MEG and EEG

脑-机接口 脑电图 计算机科学 语音识别 人工智能 模式识别(心理学) 神经科学 心理学
作者
Xiang Li,Jingjing Chen,Nanlin Shi,Chen Yang,Puze Gao,Xiaogang Chen,Yijun Wang,Shangkai Gao,Xiaorong Gao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:223: 119736-119736 被引量:17
标识
DOI:10.1016/j.eswa.2023.119736
摘要

While recent developments in electroencephalogram (EEG)-based brain-computer interfaces (BCIs) have enabled a bridge between the brain and external devices with relatively high communication speed, there is still room for improvement. Notably, the phenomenon of "BCI illiteracy," which refers to the 15%–30% of people who struggle to type or control devices using BCI, remains unsolved, limiting the practical application of BCI systems. The EEG-based BCIs performance is constrained by the low-quality scalp EEG signals due to the attenuation and distortion of the skull. To address these limitations, this study proposes a hybrid BCI system combining EEG with magnetoencephalogram (MEG), a neuroimaging technology not influenced by the volume conduction effect, to boost BCI performance by enhancing signal quality. Comparative experiments involving 22 subjects showed that the steady-state visual evoked response (SSVER) from MEG has a wider range of effective bandwidth and higher signal-to-noise ratio than EEG. Moreover, differences in the spectral and spatiotemporal characteristics of MEG and EEG explain better performance. Simultaneous MEG-EEG recording experiments suggested that the hybrid MEG-EEG BCI achieved a significantly higher information transfer rate than either modality alone (hybrid: 312 ± 17 bits/min, MEG: 272 ± 17 bits/min, EEG: 240 ± 27 bits/min). Moreover, the 40-target classification accuracy of "BCI illiterate" increased from 50% to 95% with the help of MEG. These results highlight the methodological advantages of a hybrid MEG-EEG BCI, suggesting a promising paradigm for implementing high-speed BCIs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
月皎完成签到,获得积分10
1秒前
英姑应助自由采纳,获得10
2秒前
友好怜珊发布了新的文献求助10
2秒前
李健应助岛err采纳,获得10
2秒前
科研通AI2S应助coco采纳,获得10
3秒前
丘比特应助谢灵运采纳,获得10
3秒前
健忘不言发布了新的文献求助10
3秒前
Margot发布了新的文献求助10
3秒前
快冲冲冲发布了新的文献求助10
3秒前
我想静静发布了新的文献求助100
3秒前
4秒前
4秒前
ding应助调皮的勒采纳,获得10
4秒前
科研通AI6应助重要的蓝血采纳,获得10
4秒前
4秒前
4秒前
11完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
无限尔云完成签到,获得积分10
5秒前
高数数完成签到 ,获得积分10
5秒前
6秒前
7秒前
7秒前
充电宝应助阿瓒采纳,获得10
7秒前
燕不留声发布了新的文献求助10
8秒前
8秒前
ZeSheng完成签到,获得积分10
8秒前
打打应助汤飞柏采纳,获得10
9秒前
9秒前
匆匆而过发布了新的文献求助10
9秒前
9秒前
ximi发布了新的文献求助10
9秒前
10秒前
酷波er应助lzs123采纳,获得10
10秒前
11秒前
科研通AI6应助雪白的傥采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505994
求助须知:如何正确求助?哪些是违规求助? 4601482
关于积分的说明 14476730
捐赠科研通 4535445
什么是DOI,文献DOI怎么找? 2485408
邀请新用户注册赠送积分活动 1468357
关于科研通互助平台的介绍 1440869