A hybrid steady-state visual evoked response-based brain-computer interface with MEG and EEG

脑-机接口 脑电图 计算机科学 语音识别 人工智能 模式识别(心理学) 神经科学 心理学
作者
Xiang Li,Jingjing Chen,Nanlin Shi,Chen Yang,Puze Gao,Xiaogang Chen,Yijun Wang,Shangkai Gao,Xiaorong Gao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:223: 119736-119736 被引量:17
标识
DOI:10.1016/j.eswa.2023.119736
摘要

While recent developments in electroencephalogram (EEG)-based brain-computer interfaces (BCIs) have enabled a bridge between the brain and external devices with relatively high communication speed, there is still room for improvement. Notably, the phenomenon of "BCI illiteracy," which refers to the 15%–30% of people who struggle to type or control devices using BCI, remains unsolved, limiting the practical application of BCI systems. The EEG-based BCIs performance is constrained by the low-quality scalp EEG signals due to the attenuation and distortion of the skull. To address these limitations, this study proposes a hybrid BCI system combining EEG with magnetoencephalogram (MEG), a neuroimaging technology not influenced by the volume conduction effect, to boost BCI performance by enhancing signal quality. Comparative experiments involving 22 subjects showed that the steady-state visual evoked response (SSVER) from MEG has a wider range of effective bandwidth and higher signal-to-noise ratio than EEG. Moreover, differences in the spectral and spatiotemporal characteristics of MEG and EEG explain better performance. Simultaneous MEG-EEG recording experiments suggested that the hybrid MEG-EEG BCI achieved a significantly higher information transfer rate than either modality alone (hybrid: 312 ± 17 bits/min, MEG: 272 ± 17 bits/min, EEG: 240 ± 27 bits/min). Moreover, the 40-target classification accuracy of "BCI illiterate" increased from 50% to 95% with the help of MEG. These results highlight the methodological advantages of a hybrid MEG-EEG BCI, suggesting a promising paradigm for implementing high-speed BCIs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
戴苏完成签到,获得积分10
1秒前
Carol发布了新的文献求助10
2秒前
CA发布了新的文献求助10
3秒前
3秒前
肥鹏发布了新的文献求助10
4秒前
5秒前
戴苏发布了新的文献求助10
5秒前
5秒前
8秒前
8秒前
8秒前
10秒前
An发布了新的文献求助10
10秒前
善学以致用应助qqqq采纳,获得10
11秒前
11秒前
李昂完成签到,获得积分10
11秒前
搜集达人应助Yewei_Xiao采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
麦克疯发布了新的文献求助10
12秒前
14秒前
刘雅轩发布了新的文献求助10
14秒前
浮游应助冷酷的柜门采纳,获得10
16秒前
李健应助懒羊羊采纳,获得10
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
科研通AI6应助GG采纳,获得10
19秒前
Owen应助微微采纳,获得10
19秒前
无花果应助HHHHH采纳,获得10
20秒前
慕青应助HHHHH采纳,获得10
20秒前
李爱国应助HHHHH采纳,获得10
20秒前
彭于晏应助HHHHH采纳,获得10
20秒前
CipherSage应助HHHHH采纳,获得10
20秒前
20秒前
22秒前
23秒前
23秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655533
求助须知:如何正确求助?哪些是违规求助? 4799601
关于积分的说明 15073245
捐赠科研通 4813905
什么是DOI,文献DOI怎么找? 2575413
邀请新用户注册赠送积分活动 1530797
关于科研通互助平台的介绍 1489468