A hybrid steady-state visual evoked response-based brain-computer interface with MEG and EEG

脑-机接口 脑电图 计算机科学 语音识别 人工智能 模式识别(心理学) 神经科学 心理学
作者
Xiang Li,Jingjing Chen,Nanlin Shi,Chen Yang,Puze Gao,Xiaogang Chen,Yijun Wang,Shangkai Gao,Xiaorong Gao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:223: 119736-119736 被引量:17
标识
DOI:10.1016/j.eswa.2023.119736
摘要

While recent developments in electroencephalogram (EEG)-based brain-computer interfaces (BCIs) have enabled a bridge between the brain and external devices with relatively high communication speed, there is still room for improvement. Notably, the phenomenon of "BCI illiteracy," which refers to the 15%–30% of people who struggle to type or control devices using BCI, remains unsolved, limiting the practical application of BCI systems. The EEG-based BCIs performance is constrained by the low-quality scalp EEG signals due to the attenuation and distortion of the skull. To address these limitations, this study proposes a hybrid BCI system combining EEG with magnetoencephalogram (MEG), a neuroimaging technology not influenced by the volume conduction effect, to boost BCI performance by enhancing signal quality. Comparative experiments involving 22 subjects showed that the steady-state visual evoked response (SSVER) from MEG has a wider range of effective bandwidth and higher signal-to-noise ratio than EEG. Moreover, differences in the spectral and spatiotemporal characteristics of MEG and EEG explain better performance. Simultaneous MEG-EEG recording experiments suggested that the hybrid MEG-EEG BCI achieved a significantly higher information transfer rate than either modality alone (hybrid: 312 ± 17 bits/min, MEG: 272 ± 17 bits/min, EEG: 240 ± 27 bits/min). Moreover, the 40-target classification accuracy of "BCI illiterate" increased from 50% to 95% with the help of MEG. These results highlight the methodological advantages of a hybrid MEG-EEG BCI, suggesting a promising paradigm for implementing high-speed BCIs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助深情的友易采纳,获得10
1秒前
1秒前
老王完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
毓桦发布了新的文献求助30
3秒前
苹果白凡完成签到,获得积分10
4秒前
4秒前
4秒前
大力山槐完成签到,获得积分10
5秒前
橘子发布了新的文献求助10
6秒前
6秒前
利华尔发布了新的文献求助10
6秒前
零度蓝莓发布了新的文献求助10
7秒前
7秒前
7秒前
啦啦啦发布了新的文献求助10
7秒前
8秒前
8秒前
10秒前
大模型应助陈陈陈采纳,获得10
10秒前
10秒前
11秒前
kimchiyak留下了新的社区评论
11秒前
领导范儿应助YE采纳,获得10
11秒前
xiaoxiao完成签到,获得积分10
11秒前
举人烧烤发布了新的文献求助10
12秒前
12秒前
小任完成签到,获得积分20
12秒前
13秒前
铁臂阿童木完成签到,获得积分10
13秒前
顾矜应助安吉采纳,获得10
13秒前
Ava应助www采纳,获得10
13秒前
还不回家发布了新的文献求助10
13秒前
俏皮麦片完成签到,获得积分10
13秒前
张张发布了新的文献求助10
15秒前
16秒前
英俊的铭应助Erin采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707