Root‐Growth‐Inspired Self‐Morphology‐Evolution of Microsized Bismuth Surrounded by Microsized Hard Carbon for Stabilized Sodium‐Ion Storage

材料科学 电化学 电极 电解质 离子 纳米技术 化学工程 纳米工程 冶金 化学 物理 物理化学 工程类 量子力学
作者
Ziyi Fang,Sicheng Fan,Zerui Yan,Dafu Tang,Gao X,Xiaojuan Huang,Hongfei Zheng,Binhao Wang,Qinyao Jiang,Jiuhui Han,Jie Lin,Qingshui Xie,Dong‐Liang Peng,Qiulong Wei
出处
期刊:Advanced Materials [Wiley]
被引量:1
标识
DOI:10.1002/adma.202412636
摘要

Abstract Alloy‐type materials are desirable for high‐energy sodium‐ion batteries. Different from nanoengineering with pre‐reserving void space and confined carbon coatings, microsized particles promise high specific/volumetric capacities, easy manufacturing, and low cost but are prone to rapid capacity loss. Herein, inspired by the process of “root growth in soil”, microsized Bi particles (µm‐Bi, as “seeds”) surrounded by microsized hard carbon particles (µm‐HC, as “soil”) are ingeniously dispersed through a simple mixing approach. This design utilizes the morphological self‐evolution of µm‐Bi into Bi‐nanonetworks between dispersed µm‐HC during repeated (de)sodiations, leading to a stable capacity retention of 99.8% for 2000 cycles, higher than that of the µm‐Bi electrode (7.2%) at a high mass loading of 5.5 mg cm −2 . The interconnected Bi‐nanonetworks and µm‐HC particles provide continuous electron pathways and facilitate electrolyte infiltration, which effectively boosts electrical contact, stable cycling, and high‐rate capability. Especially, the hybrid Bi 40 HC 60 (optimized weight ratio) thick‐film electrode shows boosted comprehensive electrochemical performance, superior to HC and µm‐Bi electrodes. The Bi 40 HC 60 ||Na 3 V 2 (PO 4 ) 3 full cell, assembled without any pre‐treatment, delivers 4500 stable cycles. This nature‐inspired strategy provides a simple yet practical approach for employing the electrochemically driven evolution of micro‐sized active materials and realizing high specific/volumetric capacities, fast kinetics, and long‐term cycling stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一片树叶应助生命采纳,获得30
刚刚
刚刚
浮沉发布了新的文献求助10
刚刚
sasa完成签到,获得积分10
1秒前
樊宇欣发布了新的文献求助10
1秒前
2秒前
2秒前
六子发布了新的文献求助10
2秒前
3秒前
Salah完成签到,获得积分20
3秒前
羽宇发布了新的文献求助10
4秒前
纯真忆秋发布了新的文献求助10
4秒前
4秒前
4秒前
从容迎松发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
科研通AI5应助xm采纳,获得10
5秒前
6秒前
GQL发布了新的文献求助10
6秒前
田田完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
luo0306应助renke采纳,获得10
7秒前
黄123完成签到,获得积分20
8秒前
研究僧完成签到,获得积分20
8秒前
8秒前
8秒前
8秒前
刘一三发布了新的文献求助10
9秒前
9秒前
Ye发布了新的文献求助10
9秒前
9秒前
兴奋的以蓝完成签到,获得积分10
10秒前
11秒前
欢喜的丹翠完成签到,获得积分10
11秒前
轻松寒安发布了新的文献求助10
11秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3723493
求助须知:如何正确求助?哪些是违规求助? 3269242
关于积分的说明 9959088
捐赠科研通 2983673
什么是DOI,文献DOI怎么找? 1636731
邀请新用户注册赠送积分活动 777177
科研通“疑难数据库(出版商)”最低求助积分说明 746806