Mobile augmented reality techniques with gamification to enhance learnability for higher institute students of chemistry course

可学性 增强现实 高等教育 计算机科学 数学教育 多媒体 心理学 化学 人机交互 政治学 法学
作者
Entisar Alhadi Al Ghawail,Sadok Ben Yahia
出处
期刊:Journal of Applied Research in Higher Education [Babeș-Bolyai University]
标识
DOI:10.1108/jarhe-11-2023-0508
摘要

Purpose The current study intends to use green-driven augmented reality (AR) with gamification application to help students at the Higher Institute of Science and Technology (HIST) in Libya to effectively learn general chemistry concepts successfully and with minimum side effects on individuals and the environment. It also aims to shed light on the students’ learnability, neural and psychological mechanisms under the green-driven, AR-oriented learning environment that might affect students’ personality, feelings and moods. For this study, smartphones and smart glasses are employed to design AR-G technology. Design/methodology/approach The sample of this study was divided into two groups: the experimental and the control groups. The experimental group used the AR app, and the control group used 2D pictures. The experiment was in two stages: for the first one, a 3D interactive story game reflecting the classroom and the laboratory was designed in which students feel secure and entertained in learning chemistry concepts. In the second stage, the designed gamification solution developed in Unity AR was assessed to measure its acceptability and environmental effects. Findings This study aimed to investigate mobile AR learning experiences. The researchers designed an AR-based game for general chemistry learning, to investigate its effects on students’ behavior, satisfaction and attention. In addition, it intended to uncover the challenges they faced, their experience, concerns about using and the time spent interacting with AR. This study showed that a postlecture activity of testing with AR games affected the retention of lecture contents over 12 weeks significantly better than the retention of the material taught by traditional teaching methodology. Thus, AR-G technology helped to lower students’ test anxiety and increased the regularity of studying. In this study, a student learned in the environment and was liberated from corporeal and sensory connections with their physical surroundings, which greatly aided in improving their experience and collecting players’ learnability analytics, experience, motivation and well-being via game analytics. However, AR-G technology established a competitive learning environment to increase learning by allowing students to be more involved in the learning process and therefore more motivated, resulting in greater real-world performance. On the other hand, that agrees with the latest studies in neuroeducation indicating that it is difficult to learn without conscious and sustained attention. Noreikis et al . (2019) confirmed in their research that action video games could greatly enhance perceptual ability and improve concentration, resulting in a positive impact on learning effectiveness. Research limitations/implications The study has difficulties such as certain hardware being incompatible with the systems of the user device, such as HMD with mobile, and incompatible games. Although AR is not a new technology, one of its challenges is that instructors and students may not be comfortable using it and may not be convinced of the usefulness of technology. One drawback of the current study was that it was limited to a single first-year chemistry class. If the study had been done across several lengthy semesters, it could have had a more beneficial outcome. Another challenge was the small number of participants of students, and their withdrawal for unexpected medical conditions or psychological distress. The choice of one gaming session in a week could generate biased results. Practical implications This study explores how AR with gamification technology can support learning general chemistry topics and shows that AR improved academic achievement and provided instant feedback. The results indicate that AR technology could be helpful in an academic setting by increasing academic achievement and raising motivation for the students who used AR-G technology. Social implications 50% of the interviewees had positive learning experience of AR referring to AR as an enjoyable learning value they gained. One participant commented that “I believe that the augmented reality would be better compared to long texts, and may be suitable for young learners and I feel it is quite efficient and effective”. More than half of the interviewees too considered augmented reality motivating them, triggering their ambition to search for answers to the questions and enhancing further motivated classroom learning. Two interviewees argued that AR potentially develops fun experiences but not necessarily improve learning. Originality/value To meet the objective, 3D interactive story game that imitates the classroom and the laboratory environment in an ecofriendly, entertaining and exciting manner was designed for students of a chemistry course. The first classroom chemistry syllabus was overall divided into three learning units based on their increasing level of difficulty. For each learning unit, the proposed game will offer three modes of green-driven AR-G smart learning. To keep the target students motivated in order to undertake the gaming activity on a regular basis, various motivational affordances will be systematically embedded within the proposed game strategy that includes points, leaderboards, achievements, badges, levels, story, theme, feedback, clear goals, day-to-day challenges and rewards (Deterding et al . (2011), Stott and Neustaedter (2013). Finally, the designed gamification solution was developed in Unity AR, which was later preliminarily tested to evaluate its acceptability and impact on environmental sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuzhihong完成签到,获得积分10
刚刚
1秒前
1秒前
Kevin发布了新的文献求助10
2秒前
隐形曼青应助孙波采纳,获得10
4秒前
TRY发布了新的文献求助10
4秒前
秋水发布了新的文献求助30
6秒前
6秒前
科研发布了新的文献求助10
6秒前
6秒前
7秒前
科研小白完成签到,获得积分10
8秒前
赘婿应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
丁浩伦应助大气的黑夜采纳,获得10
9秒前
蓝天应助大气的黑夜采纳,获得10
9秒前
鸣笛应助科研通管家采纳,获得30
9秒前
leaolf应助科研通管家采纳,获得20
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
10秒前
CR7应助科研通管家采纳,获得20
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
在水一方应助小李采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
xzn1123应助科研通管家采纳,获得10
10秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547536
求助须知:如何正确求助?哪些是违规求助? 3978400
关于积分的说明 12318973
捐赠科研通 3647008
什么是DOI,文献DOI怎么找? 2008488
邀请新用户注册赠送积分活动 1044026
科研通“疑难数据库(出版商)”最低求助积分说明 932617