Machine learning interatomic potential with DFT accuracy for general grain boundaries in α-Fe

晶界 原子间势 材料科学 凝聚态物理 计算机科学 冶金 化学 计算化学 物理 分子动力学 微观结构
作者
Kazuma Ito,Tatsuya Yokoi,Katsutoshi Hyodo,Hideki Mori
出处
期刊:npj computational materials [Springer Nature]
卷期号:10 (1) 被引量:16
标识
DOI:10.1038/s41524-024-01451-y
摘要

Abstract To advance the development of high-strength polycrystalline metallic materials towards achieving carbon neutrality, it is essential to design materials in which the atomic level control of general grain boundaries (GGBs), which govern the material properties, is achieved. However, owing to the complex and diverse structures of GGBs, there have been no reports on interatomic potentials capable of reproducing them. This accuracy is essential for conducting molecular dynamics analyses to derive material design guidelines. In this study, we constructed a machine learning interatomic potential (MLIP) with density functional theory (DFT) accuracy to model the energy, atomic structure, and dynamics of arbitrary grain boundaries (GBs), including GGBs, in α-Fe. Specifically, we employed a training dataset comprising diverse atomic structures generated based on crystal space groups. The GGB accuracy was evaluated by directly comparing with DFT calculations performed on cells cut near GBs from nano-polycrystals, and extrapolation grades of the local atomic environment based on active learning methods for the entire nano-polycrystal. Furthermore, we analyzed the GB energy and atomic structure in α-Fe polycrystals through large-scale molecular dynamics analysis using the constructed MLIP. The average GB energy of α-Fe polycrystals calculated by the constructed MLIP is 1.57 J/m 2 , exhibiting good agreement with experimental predictions. Our findings demonstrate the methodology for constructing an MLIP capable of representing GGBs with high accuracy, thereby paving the way for materials design based on computational materials science for polycrystalline materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
朴素洋葱发布了新的文献求助10
刚刚
刚刚
Probucola完成签到 ,获得积分10
1秒前
个性的紫菜应助YangSY采纳,获得10
1秒前
1秒前
CodeCraft应助郭慧杰采纳,获得10
2秒前
2秒前
邓李梅发布了新的文献求助10
2秒前
牛马一生发布了新的文献求助10
3秒前
3秒前
光军发布了新的文献求助10
3秒前
zyy完成签到,获得积分10
4秒前
万能图书馆应助刘骁萱采纳,获得10
4秒前
肥肥些发布了新的文献求助20
4秒前
cherry发布了新的文献求助10
5秒前
Sue发布了新的文献求助10
5秒前
5秒前
SJR关闭了SJR文献求助
6秒前
JamesPei应助夏夏采纳,获得10
6秒前
祁尒发布了新的文献求助10
6秒前
王李俊完成签到 ,获得积分10
7秒前
7秒前
北还北完成签到,获得积分10
7秒前
jenjen要发20分关注了科研通微信公众号
7秒前
难过千凝发布了新的文献求助10
8秒前
小闵完成签到,获得积分10
8秒前
动人的娜天完成签到,获得积分10
8秒前
Stting完成签到 ,获得积分10
9秒前
WizBLue完成签到,获得积分10
9秒前
HR112发布了新的文献求助30
9秒前
9秒前
明亮依波完成签到,获得积分10
9秒前
ceciiahanhan完成签到,获得积分10
9秒前
五山第一院士完成签到,获得积分10
9秒前
老年学术废物完成签到 ,获得积分10
9秒前
研友_5Y9Z75完成签到 ,获得积分0
10秒前
熙20团宝儿完成签到,获得积分10
10秒前
思源应助小陈采纳,获得10
10秒前
肉胖胖肉完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652096
求助须知:如何正确求助?哪些是违规求助? 4786741
关于积分的说明 15058468
捐赠科研通 4810724
什么是DOI,文献DOI怎么找? 2573366
邀请新用户注册赠送积分活动 1529262
关于科研通互助平台的介绍 1488171