Machine learning interatomic potential with DFT accuracy for general grain boundaries in α-Fe

晶界 原子间势 材料科学 凝聚态物理 计算机科学 冶金 化学 计算化学 物理 分子动力学 微观结构
作者
Kazuma Ito,Tatsuya Yokoi,Katsutoshi Hyodo,Hideki Mori
出处
期刊:npj computational materials [Springer Nature]
卷期号:10 (1) 被引量:1
标识
DOI:10.1038/s41524-024-01451-y
摘要

Abstract To advance the development of high-strength polycrystalline metallic materials towards achieving carbon neutrality, it is essential to design materials in which the atomic level control of general grain boundaries (GGBs), which govern the material properties, is achieved. However, owing to the complex and diverse structures of GGBs, there have been no reports on interatomic potentials capable of reproducing them. This accuracy is essential for conducting molecular dynamics analyses to derive material design guidelines. In this study, we constructed a machine learning interatomic potential (MLIP) with density functional theory (DFT) accuracy to model the energy, atomic structure, and dynamics of arbitrary grain boundaries (GBs), including GGBs, in α-Fe. Specifically, we employed a training dataset comprising diverse atomic structures generated based on crystal space groups. The GGB accuracy was evaluated by directly comparing with DFT calculations performed on cells cut near GBs from nano-polycrystals, and extrapolation grades of the local atomic environment based on active learning methods for the entire nano-polycrystal. Furthermore, we analyzed the GB energy and atomic structure in α-Fe polycrystals through large-scale molecular dynamics analysis using the constructed MLIP. The average GB energy of α-Fe polycrystals calculated by the constructed MLIP is 1.57 J/m 2 , exhibiting good agreement with experimental predictions. Our findings demonstrate the methodology for constructing an MLIP capable of representing GGBs with high accuracy, thereby paving the way for materials design based on computational materials science for polycrystalline materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木木发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
junren完成签到,获得积分10
1秒前
英姑应助南山采纳,获得10
3秒前
李健的粉丝团团长应助huxy采纳,获得10
3秒前
科研吗喽发布了新的文献求助10
3秒前
3秒前
junren发布了新的文献求助50
4秒前
动听帆布鞋完成签到,获得积分10
5秒前
小勉发布了新的文献求助10
6秒前
7秒前
科研通AI5应助燕知南采纳,获得10
8秒前
Siri烤布蕾完成签到,获得积分10
8秒前
科研通AI2S应助俊逸的烧鹅采纳,获得80
8秒前
9秒前
科研通AI5应助俏皮小天鹅采纳,获得10
10秒前
橘子法则完成签到,获得积分10
11秒前
梁业松发布了新的文献求助10
11秒前
Ryan发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
jan0114发布了新的文献求助10
12秒前
13秒前
任性的小MM完成签到,获得积分10
13秒前
WYN发布了新的文献求助10
13秒前
身处人海完成签到,获得积分10
13秒前
老板娘完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
15秒前
lucia关注了科研通微信公众号
15秒前
贾晓宇发布了新的文献求助10
15秒前
16秒前
小勉完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512998
求助须知:如何正确求助?哪些是违规求助? 3095363
关于积分的说明 9227963
捐赠科研通 2790410
什么是DOI,文献DOI怎么找? 1531185
邀请新用户注册赠送积分活动 711354
科研通“疑难数据库(出版商)”最低求助积分说明 706735