Machine learning interatomic potential with DFT accuracy for general grain boundaries in α-Fe

晶界 原子间势 材料科学 凝聚态物理 计算机科学 冶金 化学 计算化学 物理 分子动力学 微观结构
作者
Kazuma Ito,Tatsuya Yokoi,Katsutoshi Hyodo,Hideki Mori
出处
期刊:npj computational materials [Nature Portfolio]
卷期号:10 (1) 被引量:1
标识
DOI:10.1038/s41524-024-01451-y
摘要

Abstract To advance the development of high-strength polycrystalline metallic materials towards achieving carbon neutrality, it is essential to design materials in which the atomic level control of general grain boundaries (GGBs), which govern the material properties, is achieved. However, owing to the complex and diverse structures of GGBs, there have been no reports on interatomic potentials capable of reproducing them. This accuracy is essential for conducting molecular dynamics analyses to derive material design guidelines. In this study, we constructed a machine learning interatomic potential (MLIP) with density functional theory (DFT) accuracy to model the energy, atomic structure, and dynamics of arbitrary grain boundaries (GBs), including GGBs, in α-Fe. Specifically, we employed a training dataset comprising diverse atomic structures generated based on crystal space groups. The GGB accuracy was evaluated by directly comparing with DFT calculations performed on cells cut near GBs from nano-polycrystals, and extrapolation grades of the local atomic environment based on active learning methods for the entire nano-polycrystal. Furthermore, we analyzed the GB energy and atomic structure in α-Fe polycrystals through large-scale molecular dynamics analysis using the constructed MLIP. The average GB energy of α-Fe polycrystals calculated by the constructed MLIP is 1.57 J/m 2 , exhibiting good agreement with experimental predictions. Our findings demonstrate the methodology for constructing an MLIP capable of representing GGBs with high accuracy, thereby paving the way for materials design based on computational materials science for polycrystalline materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
miro完成签到,获得积分10
刚刚
搬砖民工完成签到,获得积分10
1秒前
1秒前
cyt9999完成签到,获得积分10
1秒前
HIH完成签到 ,获得积分10
1秒前
yu完成签到,获得积分10
1秒前
事在人为发布了新的文献求助10
2秒前
坚强的咖啡豆完成签到,获得积分10
2秒前
2秒前
Profeto应助HM采纳,获得10
2秒前
Sonny发布了新的文献求助10
2秒前
Dreamy完成签到,获得积分10
2秒前
Yfvonne完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
yxy发布了新的文献求助10
5秒前
益生菌发布了新的文献求助10
5秒前
踏实的酸奶完成签到,获得积分10
5秒前
Coldpal完成签到,获得积分10
5秒前
虎啊虎啊发布了新的文献求助10
5秒前
ljl完成签到,获得积分10
5秒前
lalala完成签到,获得积分20
5秒前
ybb完成签到,获得积分10
5秒前
球球了完成签到,获得积分10
6秒前
青易发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
小海发布了新的文献求助10
7秒前
joysa完成签到,获得积分10
8秒前
Jasper应助余生采纳,获得10
8秒前
yiyi完成签到,获得积分10
8秒前
Georges-09完成签到,获得积分10
8秒前
爱因斯宣发布了新的文献求助10
8秒前
谦让的莆完成签到 ,获得积分10
9秒前
9秒前
苏silence发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582