Dynamics of solitary waves on a ferrofluid jet: the Hamiltonian framework

磁流体 机械 物理 喷射(流体) 经典力学 哈密顿量(控制论) 磁场 数学 量子力学 数学优化
作者
Gexing Xu,Zhan Wang
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:1002
标识
DOI:10.1017/jfm.2024.1196
摘要

The stability and dynamics of solitary waves propagating along the surface of an inviscid ferrofluid jet in the absence of gravity are investigated analytically and numerically. For the axisymmetric geometry, the problem is shown to be a conservative system with total energy as the Hamiltonian; however, one of the canonical variables differs from those in the classic water-wave problem in the Cartesian coordinate system. The Dirichlet–Neumann operator appearing in the kinetic energy is then expanded as a Taylor series, described in homogeneous powers of the surface displacement. Based on the further analysis of the Dirichlet–Neumann operator, a systematic procedure is proposed to derive reduced model equations of multiple scales in various asymptotic limits from the full Euler equations in the Hamiltonian/Lagrangian framework. Particularly, a fully dispersive model arising from retaining terms valid up to the quartic order in the series expansion of the kinetic energy, which results in quadratic and cubic algebraic nonlinearities in Hamilton's equations and henceforth is abbreviated as the cubic full-dispersion model, is proposed. By comparing bifurcation curves and wave profiles of various types of axisymmetric solitary waves among different model equations, the cubic full-dispersion model is found to agree well with the full Euler equations, even for waves of considerably large amplitudes. The stability properties of axisymmetric solitary waves subjected to longitudinal disturbances are verified with the newly proposed model. Our analytical results, consistent with Saffman's theory, indicate that in the axisymmetric cylindrical system, the stability exchange subjected to superharmonic perturbations also occurs at the stationary point of the speed-energy bifurcation curve. A series of numerical experiments for the stability and dynamics of solitary waves are performed via the numerical time integration of the model equation, and collision interactions between stable solitary waves show non-elastic features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
扎克发布了新的文献求助10
刚刚
内向煎蛋发布了新的文献求助10
1秒前
甘草发布了新的文献求助10
2秒前
6666666666完成签到 ,获得积分10
2秒前
civy发布了新的文献求助10
2秒前
傲娇的小松鼠完成签到 ,获得积分10
2秒前
Stageruner完成签到,获得积分10
2秒前
zhangkx23完成签到,获得积分10
2秒前
3秒前
俊俊完成签到,获得积分10
3秒前
3秒前
4秒前
顾矜应助甲乙丙丁采纳,获得10
5秒前
咯噔完成签到,获得积分10
5秒前
科研通AI6应助powerli采纳,获得10
6秒前
222333发布了新的文献求助10
6秒前
微笑奇迹发布了新的文献求助10
7秒前
沐寒完成签到,获得积分10
7秒前
xiaojie完成签到 ,获得积分10
7秒前
8秒前
科研通AI6应助terryok采纳,获得10
8秒前
Jasper应助sugkook采纳,获得10
8秒前
8秒前
张豪杰发布了新的文献求助10
9秒前
10秒前
一二发布了新的文献求助10
10秒前
Jager.Z发布了新的文献求助10
11秒前
1nnoy发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
紫焰完成签到 ,获得积分10
13秒前
岁岁发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
lijinbei发布了新的文献求助10
14秒前
14秒前
14秒前
852应助HJJHJH采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728