Dynamics of solitary waves on a ferrofluid jet: the Hamiltonian framework

磁流体 机械 物理 喷射(流体) 经典力学 哈密顿量(控制论) 磁场 数学 量子力学 数学优化
作者
Gexing Xu,Zhan Wang
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:1002
标识
DOI:10.1017/jfm.2024.1196
摘要

The stability and dynamics of solitary waves propagating along the surface of an inviscid ferrofluid jet in the absence of gravity are investigated analytically and numerically. For the axisymmetric geometry, the problem is shown to be a conservative system with total energy as the Hamiltonian; however, one of the canonical variables differs from those in the classic water-wave problem in the Cartesian coordinate system. The Dirichlet–Neumann operator appearing in the kinetic energy is then expanded as a Taylor series, described in homogeneous powers of the surface displacement. Based on the further analysis of the Dirichlet–Neumann operator, a systematic procedure is proposed to derive reduced model equations of multiple scales in various asymptotic limits from the full Euler equations in the Hamiltonian/Lagrangian framework. Particularly, a fully dispersive model arising from retaining terms valid up to the quartic order in the series expansion of the kinetic energy, which results in quadratic and cubic algebraic nonlinearities in Hamilton's equations and henceforth is abbreviated as the cubic full-dispersion model, is proposed. By comparing bifurcation curves and wave profiles of various types of axisymmetric solitary waves among different model equations, the cubic full-dispersion model is found to agree well with the full Euler equations, even for waves of considerably large amplitudes. The stability properties of axisymmetric solitary waves subjected to longitudinal disturbances are verified with the newly proposed model. Our analytical results, consistent with Saffman's theory, indicate that in the axisymmetric cylindrical system, the stability exchange subjected to superharmonic perturbations also occurs at the stationary point of the speed-energy bifurcation curve. A series of numerical experiments for the stability and dynamics of solitary waves are performed via the numerical time integration of the model equation, and collision interactions between stable solitary waves show non-elastic features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助张艺馨采纳,获得10
1秒前
tRNA完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
白河愁发布了新的文献求助10
2秒前
3秒前
馒头完成签到 ,获得积分10
3秒前
叮叮发布了新的文献求助10
3秒前
5秒前
33完成签到 ,获得积分10
6秒前
鱼猫发布了新的文献求助10
7秒前
西贝应助Xxsy采纳,获得10
7秒前
林夕完成签到 ,获得积分10
8秒前
拼搏的桐完成签到,获得积分10
8秒前
9秒前
cc完成签到 ,获得积分10
10秒前
不会回信息的猪完成签到,获得积分20
11秒前
ChengYonghui完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
bill完成签到,获得积分10
12秒前
孟龙威完成签到,获得积分10
13秒前
心理咨熊师完成签到,获得积分10
13秒前
微风打了烊完成签到 ,获得积分10
13秒前
JFP完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
CodeCraft应助biu采纳,获得10
16秒前
飞快的语蕊完成签到,获得积分10
17秒前
小程同学完成签到,获得积分10
18秒前
竹本完成签到 ,获得积分10
18秒前
Vanness发布了新的文献求助10
18秒前
pancake发布了新的文献求助30
19秒前
20秒前
20秒前
21秒前
浮游应助ZZZ采纳,获得10
21秒前
24秒前
24秒前
赘婿应助王小帅ok采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337