Dynamics of solitary waves on a ferrofluid jet: the Hamiltonian framework

磁流体 机械 物理 喷射(流体) 经典力学 哈密顿量(控制论) 磁场 数学 量子力学 数学优化
作者
Gexing Xu,Zhan Wang
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:1002
标识
DOI:10.1017/jfm.2024.1196
摘要

The stability and dynamics of solitary waves propagating along the surface of an inviscid ferrofluid jet in the absence of gravity are investigated analytically and numerically. For the axisymmetric geometry, the problem is shown to be a conservative system with total energy as the Hamiltonian; however, one of the canonical variables differs from those in the classic water-wave problem in the Cartesian coordinate system. The Dirichlet–Neumann operator appearing in the kinetic energy is then expanded as a Taylor series, described in homogeneous powers of the surface displacement. Based on the further analysis of the Dirichlet–Neumann operator, a systematic procedure is proposed to derive reduced model equations of multiple scales in various asymptotic limits from the full Euler equations in the Hamiltonian/Lagrangian framework. Particularly, a fully dispersive model arising from retaining terms valid up to the quartic order in the series expansion of the kinetic energy, which results in quadratic and cubic algebraic nonlinearities in Hamilton's equations and henceforth is abbreviated as the cubic full-dispersion model, is proposed. By comparing bifurcation curves and wave profiles of various types of axisymmetric solitary waves among different model equations, the cubic full-dispersion model is found to agree well with the full Euler equations, even for waves of considerably large amplitudes. The stability properties of axisymmetric solitary waves subjected to longitudinal disturbances are verified with the newly proposed model. Our analytical results, consistent with Saffman's theory, indicate that in the axisymmetric cylindrical system, the stability exchange subjected to superharmonic perturbations also occurs at the stationary point of the speed-energy bifurcation curve. A series of numerical experiments for the stability and dynamics of solitary waves are performed via the numerical time integration of the model equation, and collision interactions between stable solitary waves show non-elastic features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zzzddd完成签到,获得积分10
2秒前
调皮蛋完成签到,获得积分10
2秒前
Gakay完成签到,获得积分10
2秒前
2秒前
hohn完成签到,获得积分10
2秒前
meng完成签到,获得积分10
2秒前
哈哈悦完成签到,获得积分10
4秒前
CyrusSo524应助曾志伟采纳,获得10
4秒前
li完成签到,获得积分10
4秒前
学术小白two完成签到,获得积分10
4秒前
科目三应助夏夏子采纳,获得10
4秒前
天真小甜瓜完成签到,获得积分10
4秒前
yannna发布了新的文献求助10
4秒前
CallMeIris完成签到,获得积分10
5秒前
5秒前
FloraWang完成签到 ,获得积分10
5秒前
默默完成签到 ,获得积分10
5秒前
土豆你个西红柿完成签到,获得积分10
6秒前
丹丹子完成签到 ,获得积分10
7秒前
T拐拐发布了新的文献求助10
7秒前
one完成签到 ,获得积分10
7秒前
HDY完成签到,获得积分10
7秒前
上好佳完成签到,获得积分10
8秒前
科研通AI2S应助accept采纳,获得10
9秒前
正一笑完成签到,获得积分10
9秒前
十一玮完成签到,获得积分10
10秒前
10秒前
紧张的蝴蝶完成签到,获得积分20
10秒前
10秒前
11秒前
温言叮叮铛完成签到,获得积分10
11秒前
OsHTAS完成签到,获得积分10
11秒前
远之完成签到 ,获得积分10
11秒前
淡定的笙发布了新的文献求助30
11秒前
老张完成签到,获得积分10
12秒前
pp哈哈关注了科研通微信公众号
12秒前
渡边卯卯完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402085
求助须知:如何正确求助?哪些是违规求助? 4520652
关于积分的说明 14080976
捐赠科研通 4434110
什么是DOI,文献DOI怎么找? 2434394
邀请新用户注册赠送积分活动 1426603
关于科研通互助平台的介绍 1405349