Dynamics of solitary waves on a ferrofluid jet: the Hamiltonian framework

磁流体 机械 物理 喷射(流体) 经典力学 哈密顿量(控制论) 磁场 数学 量子力学 数学优化
作者
Gexing Xu,Zhan Wang
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:1002
标识
DOI:10.1017/jfm.2024.1196
摘要

The stability and dynamics of solitary waves propagating along the surface of an inviscid ferrofluid jet in the absence of gravity are investigated analytically and numerically. For the axisymmetric geometry, the problem is shown to be a conservative system with total energy as the Hamiltonian; however, one of the canonical variables differs from those in the classic water-wave problem in the Cartesian coordinate system. The Dirichlet–Neumann operator appearing in the kinetic energy is then expanded as a Taylor series, described in homogeneous powers of the surface displacement. Based on the further analysis of the Dirichlet–Neumann operator, a systematic procedure is proposed to derive reduced model equations of multiple scales in various asymptotic limits from the full Euler equations in the Hamiltonian/Lagrangian framework. Particularly, a fully dispersive model arising from retaining terms valid up to the quartic order in the series expansion of the kinetic energy, which results in quadratic and cubic algebraic nonlinearities in Hamilton's equations and henceforth is abbreviated as the cubic full-dispersion model, is proposed. By comparing bifurcation curves and wave profiles of various types of axisymmetric solitary waves among different model equations, the cubic full-dispersion model is found to agree well with the full Euler equations, even for waves of considerably large amplitudes. The stability properties of axisymmetric solitary waves subjected to longitudinal disturbances are verified with the newly proposed model. Our analytical results, consistent with Saffman's theory, indicate that in the axisymmetric cylindrical system, the stability exchange subjected to superharmonic perturbations also occurs at the stationary point of the speed-energy bifurcation curve. A series of numerical experiments for the stability and dynamics of solitary waves are performed via the numerical time integration of the model equation, and collision interactions between stable solitary waves show non-elastic features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让的心锁完成签到,获得积分20
1秒前
2秒前
aqua_xin完成签到,获得积分0
2秒前
2秒前
OK完成签到 ,获得积分10
3秒前
科研通AI6应助坦率的匪采纳,获得30
3秒前
聪慧的正豪关注了科研通微信公众号
4秒前
tobealive完成签到,获得积分10
5秒前
6秒前
科研通AI5应助跳跃的安阳采纳,获得10
9秒前
科研混子发布了新的文献求助10
9秒前
星辰大海应助xkxkii采纳,获得10
9秒前
科研通AI2S应助油菜的星星采纳,获得10
11秒前
孤独白拍完成签到 ,获得积分10
14秒前
无辜忆寒发布了新的文献求助10
15秒前
畅快的觅风完成签到,获得积分10
16秒前
每天都很忙完成签到,获得积分10
17秒前
17秒前
yang发布了新的社区帖子
17秒前
Qiaoclin完成签到,获得积分10
18秒前
qq发布了新的文献求助20
18秒前
18秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
科研通AI6应助berrypeng采纳,获得10
21秒前
21秒前
22秒前
yolo完成签到,获得积分10
22秒前
24秒前
过时的凌蝶应助楼芷天采纳,获得10
26秒前
诸葛藏藏发布了新的文献求助10
27秒前
28秒前
28秒前
white4发布了新的文献求助10
28秒前
贾茗宇发布了新的文献求助10
28秒前
不奢完成签到 ,获得积分10
29秒前
无辜忆寒完成签到,获得积分10
30秒前
31秒前
小耿完成签到,获得积分20
33秒前
默默荔枝发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896177
求助须知:如何正确求助?哪些是违规求助? 4177912
关于积分的说明 12969523
捐赠科研通 3941127
什么是DOI,文献DOI怎么找? 2162106
邀请新用户注册赠送积分活动 1180588
关于科研通互助平台的介绍 1086117