Dynamics of solitary waves on a ferrofluid jet: the Hamiltonian framework

磁流体 机械 物理 喷射(流体) 经典力学 哈密顿量(控制论) 磁场 数学 量子力学 数学优化
作者
Gexing Xu,Zhan Wang
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:1002
标识
DOI:10.1017/jfm.2024.1196
摘要

The stability and dynamics of solitary waves propagating along the surface of an inviscid ferrofluid jet in the absence of gravity are investigated analytically and numerically. For the axisymmetric geometry, the problem is shown to be a conservative system with total energy as the Hamiltonian; however, one of the canonical variables differs from those in the classic water-wave problem in the Cartesian coordinate system. The Dirichlet–Neumann operator appearing in the kinetic energy is then expanded as a Taylor series, described in homogeneous powers of the surface displacement. Based on the further analysis of the Dirichlet–Neumann operator, a systematic procedure is proposed to derive reduced model equations of multiple scales in various asymptotic limits from the full Euler equations in the Hamiltonian/Lagrangian framework. Particularly, a fully dispersive model arising from retaining terms valid up to the quartic order in the series expansion of the kinetic energy, which results in quadratic and cubic algebraic nonlinearities in Hamilton's equations and henceforth is abbreviated as the cubic full-dispersion model, is proposed. By comparing bifurcation curves and wave profiles of various types of axisymmetric solitary waves among different model equations, the cubic full-dispersion model is found to agree well with the full Euler equations, even for waves of considerably large amplitudes. The stability properties of axisymmetric solitary waves subjected to longitudinal disturbances are verified with the newly proposed model. Our analytical results, consistent with Saffman's theory, indicate that in the axisymmetric cylindrical system, the stability exchange subjected to superharmonic perturbations also occurs at the stationary point of the speed-energy bifurcation curve. A series of numerical experiments for the stability and dynamics of solitary waves are performed via the numerical time integration of the model equation, and collision interactions between stable solitary waves show non-elastic features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
唐jie完成签到 ,获得积分10
1秒前
贝塔完成签到 ,获得积分10
2秒前
第五轻柔完成签到,获得积分10
2秒前
beiwei完成签到 ,获得积分10
2秒前
科研通AI6应助ant采纳,获得10
3秒前
chenhua5460完成签到,获得积分10
3秒前
zyw发布了新的文献求助10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
蒋大少完成签到 ,获得积分10
5秒前
Ariel完成签到,获得积分10
6秒前
靓丽奇迹完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
10秒前
17312852068发布了新的文献求助10
12秒前
colddie发布了新的文献求助10
13秒前
小恐龙完成签到,获得积分10
14秒前
14秒前
14秒前
無端完成签到 ,获得积分10
14秒前
15秒前
15秒前
CJX发布了新的文献求助10
16秒前
Xixi完成签到 ,获得积分10
18秒前
大力蚂蚁发布了新的文献求助10
19秒前
20秒前
阿豪发布了新的文献求助30
20秒前
ziyue发布了新的文献求助10
21秒前
ant完成签到,获得积分10
21秒前
weiwei发布了新的文献求助10
21秒前
数值分析完成签到,获得积分10
22秒前
MrH完成签到,获得积分10
23秒前
23秒前
23秒前
狂野元枫完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603927
求助须知:如何正确求助?哪些是违规求助? 4688787
关于积分的说明 14856110
捐赠科研通 4695468
什么是DOI,文献DOI怎么找? 2541034
邀请新用户注册赠送积分活动 1507185
关于科研通互助平台的介绍 1471832