清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Dynamics of solitary waves on a ferrofluid jet: the Hamiltonian framework

磁流体 机械 物理 喷射(流体) 经典力学 哈密顿量(控制论) 磁场 数学 量子力学 数学优化
作者
Gexing Xu,Zhan Wang
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:1002
标识
DOI:10.1017/jfm.2024.1196
摘要

The stability and dynamics of solitary waves propagating along the surface of an inviscid ferrofluid jet in the absence of gravity are investigated analytically and numerically. For the axisymmetric geometry, the problem is shown to be a conservative system with total energy as the Hamiltonian; however, one of the canonical variables differs from those in the classic water-wave problem in the Cartesian coordinate system. The Dirichlet–Neumann operator appearing in the kinetic energy is then expanded as a Taylor series, described in homogeneous powers of the surface displacement. Based on the further analysis of the Dirichlet–Neumann operator, a systematic procedure is proposed to derive reduced model equations of multiple scales in various asymptotic limits from the full Euler equations in the Hamiltonian/Lagrangian framework. Particularly, a fully dispersive model arising from retaining terms valid up to the quartic order in the series expansion of the kinetic energy, which results in quadratic and cubic algebraic nonlinearities in Hamilton's equations and henceforth is abbreviated as the cubic full-dispersion model, is proposed. By comparing bifurcation curves and wave profiles of various types of axisymmetric solitary waves among different model equations, the cubic full-dispersion model is found to agree well with the full Euler equations, even for waves of considerably large amplitudes. The stability properties of axisymmetric solitary waves subjected to longitudinal disturbances are verified with the newly proposed model. Our analytical results, consistent with Saffman's theory, indicate that in the axisymmetric cylindrical system, the stability exchange subjected to superharmonic perturbations also occurs at the stationary point of the speed-energy bifurcation curve. A series of numerical experiments for the stability and dynamics of solitary waves are performed via the numerical time integration of the model equation, and collision interactions between stable solitary waves show non-elastic features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏的帽子完成签到 ,获得积分10
2秒前
14秒前
幸福大白发布了新的文献求助10
19秒前
MchemG应助科研通管家采纳,获得10
22秒前
null应助科研通管家采纳,获得10
22秒前
null应助科研通管家采纳,获得10
22秒前
null应助科研通管家采纳,获得10
22秒前
MchemG应助科研通管家采纳,获得10
22秒前
null应助科研通管家采纳,获得10
22秒前
Singularity完成签到,获得积分0
43秒前
幸福大白发布了新的文献求助10
1分钟前
胡可完成签到 ,获得积分10
1分钟前
WangVera完成签到,获得积分10
1分钟前
PeterLin完成签到,获得积分10
1分钟前
Vivian完成签到,获得积分10
1分钟前
大模型应助ping采纳,获得10
1分钟前
wssamuel完成签到 ,获得积分10
1分钟前
1分钟前
幸福大白发布了新的文献求助10
1分钟前
XxxxxxENT发布了新的文献求助10
2分钟前
润润润完成签到 ,获得积分10
2分钟前
共享精神应助勤恳傲旋采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
勤恳傲旋发布了新的文献求助10
2分钟前
2分钟前
4分钟前
斯文败类应助勤恳傲旋采纳,获得10
4分钟前
4分钟前
义气的书雁完成签到,获得积分10
4分钟前
4分钟前
ping发布了新的文献求助10
4分钟前
null应助科研通管家采纳,获得10
4分钟前
勤恳傲旋发布了新的文献求助10
4分钟前
hzh完成签到 ,获得积分10
4分钟前
4分钟前
fabius0351完成签到 ,获得积分10
4分钟前
ping完成签到,获得积分10
4分钟前
Spring完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569504
求助须知:如何正确求助?哪些是违规求助? 3991585
关于积分的说明 12355974
捐赠科研通 3663939
什么是DOI,文献DOI怎么找? 2019154
邀请新用户注册赠送积分活动 1053631
科研通“疑难数据库(出版商)”最低求助积分说明 941159