Research on the Accuracy of Machine Translation in Cross-Cultural Communication Based on Embedded Neural Networks

翻译(生物学) 人工神经网络 机器翻译 计算机科学 人工智能 生物化学 化学 信使核糖核酸 基因
作者
Han Qi
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425401251
摘要

The introduction of embedded neural network technology marks a significant leap forward in machine translation technology. This technology not only simulates the complex learning and understanding mechanisms of the human brain but also achieves precise capture and conversion of subtle differences and deep meanings in language through continuous algorithm optimization and iteration. This study mainly focuses on the accuracy of machine translation in cross-cultural communication using embedded neural network technology. Our aim is to explore in depth the potential of this advanced technology in overcoming language barriers, improving cross-cultural communication efficiency and quality. The study emphasizes the importance of deeply integrating machine translation technology with cross-cultural communication theory. Compared with traditional rule-based machine translation methods, embedded neural networks can better handle the complexity and diversity of language, reduce human set limitations and errors, and significantly improve translation accuracy. Through an interdisciplinary research perspective, the aim is to gain a deeper understanding of the unique habits, communication norms, and potential cultural differences in language use across different cultural backgrounds, in order to provide more accurate cultural context support for machine translation systems. This combination not only helps to improve the quality of translation, but also promotes mutual understanding and respect between cultures, contributing to the construction of a more harmonious and inclusive cross-cultural communication environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助包容的以筠采纳,获得20
刚刚
万能图书馆应助罗罗采纳,获得10
刚刚
罗C发布了新的文献求助10
刚刚
33发布了新的文献求助10
刚刚
刚刚
1秒前
RiRi发布了新的文献求助10
2秒前
暴龙战神发布了新的文献求助10
2秒前
CC发布了新的文献求助100
2秒前
香蕉觅云应助eee7y采纳,获得20
2秒前
SYLH应助Negoluse采纳,获得30
3秒前
3秒前
3秒前
33完成签到,获得积分10
4秒前
4秒前
东方完成签到,获得积分20
4秒前
大个应助挽挽采纳,获得10
4秒前
5秒前
乐乐应助菲菲采纳,获得30
5秒前
郭豪琪发布了新的文献求助10
6秒前
呼啦啦完成签到 ,获得积分10
6秒前
木木三完成签到,获得积分10
6秒前
CodeCraft应助锦七采纳,获得10
6秒前
1111发布了新的文献求助10
7秒前
qiong完成签到,获得积分10
8秒前
8秒前
8秒前
母单花发布了新的文献求助10
8秒前
cheer发布了新的文献求助10
9秒前
罗罗完成签到,获得积分10
9秒前
9秒前
热心一一发布了新的文献求助10
10秒前
10秒前
文献看不懂应助赵__采纳,获得50
10秒前
Owen应助球闪采纳,获得10
12秒前
12秒前
13秒前
13秒前
vadfdfb完成签到,获得积分10
13秒前
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772170
求助须知:如何正确求助?哪些是违规求助? 3317479
关于积分的说明 10186015
捐赠科研通 3032693
什么是DOI,文献DOI怎么找? 1663653
邀请新用户注册赠送积分活动 795872
科研通“疑难数据库(出版商)”最低求助积分说明 757089