亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Sustainable Automated Fruit Sorting: Hyperspectral Analysis and Machine Learning Algorithms

高光谱成像 分类 计算机科学 机器学习 人工智能 算法 排序算法 模式识别(心理学)
作者
Dmitriy Khort,Alexey Kutyrev,Igor Smirnov,Nikita Andriyanov,Rostislav Filippov,Andrey Chilikin,Maxim E. Astashev,Elena A. Molkova,Ruslan M. Sarimov,Tatyana A. Matveeva,Sergey V. Gudkov
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (22): 10084-10084
标识
DOI:10.3390/su162210084
摘要

Recognizing and classifying localized lesions on apple fruit surfaces during automated sorting is critical for improving product quality and increasing the sustainability of fruit production. This study is aimed at developing sustainable methods for fruit sorting by applying hyperspectral analysis and machine learning to improve product quality and reduce losses. The employed hyperspectral technologies and machine learning algorithms enable the rapid and accurate detection of defects on the surface of fruits, enhancing product quality and reducing the number of rejects, thereby contributing to the sustainability of agriculture. This study seeks to advance commercial fruit quality control by comparing hyperspectral image classification algorithms to detect apple lesions caused by pathogens, including sunburn, scab, and rot, on three apple varieties: Honeycrisp, Gala, and Jonagold. The lesions were confirmed independently using expert judgment, real-time PCR, and 3D fluorimetry, providing a high accuracy of ground truth data and allowing conclusions to be drawn on ways to improve the sustainability and safety of the agrocenosis in which the fruits are grown. Hyperspectral imaging combined with mathematical analysis revealed that Venturia inaequalis is the main pathogen responsible for scab, while Botrytis cinerea and Penicillium expansum are the main causes of rot. This comparative study is important because it provides a detailed analysis of the performance of both supervised and unsupervised classification methods for hyperspectral imagery, which is essential for the development of reliable automated grading systems. Support Vector Machines (SVM) proved to be the most accurate, with the highest average adjusted Rand Index (ARI) scores for sunscald (0.789), scab (0.818), and rot (0.854), making it the preferred approach for classifying apple lesions during grading. K-Means performed well for scab (0.786) and rot (0.84) classes, but showed limitations with lower metrics for other lesion types. A design and technological scheme of an optical system for identifying micro- and macro-damage to fruit tissues is proposed, and the dependence of the percentage of apple damage on the rotation frequency of the sorting line rollers is obtained. The optimal values for the rotation frequency of the rollers, at which the damage to apples is less than 5%, are up to 6 Hz. The results of this study confirm the high potential of hyperspectral data for the non-invasive recognition and classification of apple diseases in automated sorting systems with an accuracy comparable to that of human experts. These results provide valuable insights into the optimization of machine learning algorithms for agricultural applications, contributing to the development of more efficient and accurate fruit quality control systems, improved production sustainability, and the long-term storage of fruits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助aaaa采纳,获得10
刚刚
小寒完成签到,获得积分10
5秒前
7秒前
SSY发布了新的文献求助10
10秒前
10秒前
12秒前
komorebi发布了新的文献求助10
13秒前
小鸟芋圆露露完成签到 ,获得积分0
14秒前
英俊汝燕发布了新的文献求助10
15秒前
17秒前
123发布了新的文献求助10
20秒前
23秒前
在水一方应助万事喜采纳,获得30
24秒前
BowieHuang应助Jia采纳,获得10
25秒前
在水一方应助英俊汝燕采纳,获得10
26秒前
27秒前
Dr_Zeyu完成签到,获得积分10
28秒前
28秒前
30秒前
30秒前
shinn发布了新的文献求助10
31秒前
Criminology34应助科研通管家采纳,获得10
32秒前
Criminology34应助科研通管家采纳,获得10
33秒前
田様应助科研通管家采纳,获得10
33秒前
Rita应助科研通管家采纳,获得10
33秒前
Rita应助科研通管家采纳,获得10
33秒前
Criminology34应助科研通管家采纳,获得10
33秒前
在水一方应助科研通管家采纳,获得10
33秒前
33秒前
科研通AI6.1应助Dr_Zeyu采纳,获得10
34秒前
小休完成签到 ,获得积分10
34秒前
richang发布了新的文献求助10
34秒前
35秒前
小蘑菇应助宇宙超人007008采纳,获得10
38秒前
orixero应助机智皮卡丘采纳,获得10
43秒前
45秒前
嗨皮猫完成签到,获得积分10
48秒前
等一下就吃大米饭完成签到,获得积分10
49秒前
50秒前
喵了个咪发布了新的文献求助10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772347
求助须知:如何正确求助?哪些是违规求助? 5597618
关于积分的说明 15429486
捐赠科研通 4905352
什么是DOI,文献DOI怎么找? 2639330
邀请新用户注册赠送积分活动 1587278
关于科研通互助平台的介绍 1542120