已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing Sustainable Automated Fruit Sorting: Hyperspectral Analysis and Machine Learning Algorithms

高光谱成像 分类 计算机科学 机器学习 人工智能 算法 排序算法 模式识别(心理学)
作者
Dmitriy Khort,Alexey Kutyrev,Igor Smirnov,Nikita Andriyanov,Rostislav Filippov,Andrey Chilikin,Maxim E. Astashev,Elena A. Molkova,Ruslan M. Sarimov,Tatyana A. Matveeva,Sergey V. Gudkov
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (22): 10084-10084
标识
DOI:10.3390/su162210084
摘要

Recognizing and classifying localized lesions on apple fruit surfaces during automated sorting is critical for improving product quality and increasing the sustainability of fruit production. This study is aimed at developing sustainable methods for fruit sorting by applying hyperspectral analysis and machine learning to improve product quality and reduce losses. The employed hyperspectral technologies and machine learning algorithms enable the rapid and accurate detection of defects on the surface of fruits, enhancing product quality and reducing the number of rejects, thereby contributing to the sustainability of agriculture. This study seeks to advance commercial fruit quality control by comparing hyperspectral image classification algorithms to detect apple lesions caused by pathogens, including sunburn, scab, and rot, on three apple varieties: Honeycrisp, Gala, and Jonagold. The lesions were confirmed independently using expert judgment, real-time PCR, and 3D fluorimetry, providing a high accuracy of ground truth data and allowing conclusions to be drawn on ways to improve the sustainability and safety of the agrocenosis in which the fruits are grown. Hyperspectral imaging combined with mathematical analysis revealed that Venturia inaequalis is the main pathogen responsible for scab, while Botrytis cinerea and Penicillium expansum are the main causes of rot. This comparative study is important because it provides a detailed analysis of the performance of both supervised and unsupervised classification methods for hyperspectral imagery, which is essential for the development of reliable automated grading systems. Support Vector Machines (SVM) proved to be the most accurate, with the highest average adjusted Rand Index (ARI) scores for sunscald (0.789), scab (0.818), and rot (0.854), making it the preferred approach for classifying apple lesions during grading. K-Means performed well for scab (0.786) and rot (0.84) classes, but showed limitations with lower metrics for other lesion types. A design and technological scheme of an optical system for identifying micro- and macro-damage to fruit tissues is proposed, and the dependence of the percentage of apple damage on the rotation frequency of the sorting line rollers is obtained. The optimal values for the rotation frequency of the rollers, at which the damage to apples is less than 5%, are up to 6 Hz. The results of this study confirm the high potential of hyperspectral data for the non-invasive recognition and classification of apple diseases in automated sorting systems with an accuracy comparable to that of human experts. These results provide valuable insights into the optimization of machine learning algorithms for agricultural applications, contributing to the development of more efficient and accurate fruit quality control systems, improved production sustainability, and the long-term storage of fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七草肃完成签到,获得积分10
1秒前
酷波er应助因几采纳,获得10
2秒前
2秒前
kim完成签到 ,获得积分10
3秒前
袁粪到了完成签到 ,获得积分10
3秒前
5秒前
火山大王发布了新的文献求助10
6秒前
7秒前
披星戴月完成签到,获得积分10
7秒前
Furmark_14完成签到,获得积分10
9秒前
jyy完成签到,获得积分10
11秒前
薯条狂热爱好者完成签到 ,获得积分10
16秒前
所所应助跳跃的千柳采纳,获得10
16秒前
Hello应助如意歌曲采纳,获得50
17秒前
20秒前
20秒前
22秒前
Andy完成签到,获得积分10
23秒前
罗伊黄完成签到 ,获得积分10
24秒前
26秒前
如意歌曲发布了新的文献求助50
27秒前
仔仔完成签到 ,获得积分10
28秒前
Calyn完成签到 ,获得积分10
28秒前
29秒前
科研通AI2S应助如意歌曲采纳,获得10
30秒前
情怀应助如意歌曲采纳,获得50
30秒前
Zxc发布了新的文献求助10
31秒前
33秒前
33秒前
情怀应助caiji采纳,获得10
34秒前
35秒前
38秒前
我的苞娜公主完成签到,获得积分10
38秒前
煎蛋公主发布了新的文献求助10
40秒前
AURORA完成签到 ,获得积分10
41秒前
顺利山蝶发布了新的文献求助10
42秒前
GreenDuane完成签到 ,获得积分0
44秒前
SciKid524完成签到 ,获得积分10
44秒前
49秒前
jjj完成签到,获得积分10
49秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229564
求助须知:如何正确求助?哪些是违规求助? 2877200
关于积分的说明 8198195
捐赠科研通 2544545
什么是DOI,文献DOI怎么找? 1374513
科研通“疑难数据库(出版商)”最低求助积分说明 646978
邀请新用户注册赠送积分活动 621749