Enhancing Sustainable Automated Fruit Sorting: Hyperspectral Analysis and Machine Learning Algorithms

高光谱成像 分类 计算机科学 机器学习 人工智能 算法 排序算法 模式识别(心理学)
作者
Dmitriy Khort,Alexey Kutyrev,Igor Smirnov,Nikita Andriyanov,Rostislav Filippov,Andrey Chilikin,Maxim E. Astashev,Elena A. Molkova,Ruslan M. Sarimov,Tatyana A. Matveeva,Sergey V. Gudkov
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:16 (22): 10084-10084
标识
DOI:10.3390/su162210084
摘要

Recognizing and classifying localized lesions on apple fruit surfaces during automated sorting is critical for improving product quality and increasing the sustainability of fruit production. This study is aimed at developing sustainable methods for fruit sorting by applying hyperspectral analysis and machine learning to improve product quality and reduce losses. The employed hyperspectral technologies and machine learning algorithms enable the rapid and accurate detection of defects on the surface of fruits, enhancing product quality and reducing the number of rejects, thereby contributing to the sustainability of agriculture. This study seeks to advance commercial fruit quality control by comparing hyperspectral image classification algorithms to detect apple lesions caused by pathogens, including sunburn, scab, and rot, on three apple varieties: Honeycrisp, Gala, and Jonagold. The lesions were confirmed independently using expert judgment, real-time PCR, and 3D fluorimetry, providing a high accuracy of ground truth data and allowing conclusions to be drawn on ways to improve the sustainability and safety of the agrocenosis in which the fruits are grown. Hyperspectral imaging combined with mathematical analysis revealed that Venturia inaequalis is the main pathogen responsible for scab, while Botrytis cinerea and Penicillium expansum are the main causes of rot. This comparative study is important because it provides a detailed analysis of the performance of both supervised and unsupervised classification methods for hyperspectral imagery, which is essential for the development of reliable automated grading systems. Support Vector Machines (SVM) proved to be the most accurate, with the highest average adjusted Rand Index (ARI) scores for sunscald (0.789), scab (0.818), and rot (0.854), making it the preferred approach for classifying apple lesions during grading. K-Means performed well for scab (0.786) and rot (0.84) classes, but showed limitations with lower metrics for other lesion types. A design and technological scheme of an optical system for identifying micro- and macro-damage to fruit tissues is proposed, and the dependence of the percentage of apple damage on the rotation frequency of the sorting line rollers is obtained. The optimal values for the rotation frequency of the rollers, at which the damage to apples is less than 5%, are up to 6 Hz. The results of this study confirm the high potential of hyperspectral data for the non-invasive recognition and classification of apple diseases in automated sorting systems with an accuracy comparable to that of human experts. These results provide valuable insights into the optimization of machine learning algorithms for agricultural applications, contributing to the development of more efficient and accurate fruit quality control systems, improved production sustainability, and the long-term storage of fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李ye完成签到,获得积分10
刚刚
馒头完成签到,获得积分20
1秒前
CipherSage应助独特凡松采纳,获得10
1秒前
慕青应助科研苦行僧采纳,获得20
6秒前
7秒前
随遇而安完成签到,获得积分10
8秒前
10秒前
10秒前
10秒前
RenHP发布了新的文献求助10
12秒前
13秒前
wangmou完成签到,获得积分10
13秒前
13秒前
Davidfly20发布了新的文献求助10
14秒前
14秒前
王羊补牢发布了新的文献求助10
15秒前
16秒前
CHENG完成签到,获得积分10
16秒前
yue完成签到,获得积分10
16秒前
科研通AI2S应助Sebastian采纳,获得10
16秒前
羞涩的西牛完成签到 ,获得积分10
17秒前
博修发布了新的文献求助10
17秒前
科目三应助怡然的怀莲采纳,获得10
18秒前
18秒前
hq发布了新的文献求助10
18秒前
19秒前
8R60d8应助果实采纳,获得10
19秒前
内向花卷发布了新的文献求助10
21秒前
汉堡包应助感动的寒风采纳,获得10
22秒前
topsun完成签到,获得积分10
22秒前
HeWA完成签到,获得积分10
22秒前
24秒前
外向语蝶发布了新的文献求助10
25秒前
Liangyu发布了新的文献求助10
29秒前
大尧子完成签到 ,获得积分10
29秒前
30秒前
eli完成签到,获得积分10
32秒前
李ye发布了新的文献求助30
32秒前
wwj完成签到,获得积分10
32秒前
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135478
捐赠科研通 3239777
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150