亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Sustainable Automated Fruit Sorting: Hyperspectral Analysis and Machine Learning Algorithms

高光谱成像 分类 计算机科学 机器学习 人工智能 算法 排序算法 模式识别(心理学)
作者
Dmitriy Khort,Alexey Kutyrev,Igor Smirnov,Nikita Andriyanov,Rostislav Filippov,Andrey Chilikin,Maxim E. Astashev,Elena A. Molkova,Ruslan M. Sarimov,Tatyana A. Matveeva,Sergey V. Gudkov
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (22): 10084-10084
标识
DOI:10.3390/su162210084
摘要

Recognizing and classifying localized lesions on apple fruit surfaces during automated sorting is critical for improving product quality and increasing the sustainability of fruit production. This study is aimed at developing sustainable methods for fruit sorting by applying hyperspectral analysis and machine learning to improve product quality and reduce losses. The employed hyperspectral technologies and machine learning algorithms enable the rapid and accurate detection of defects on the surface of fruits, enhancing product quality and reducing the number of rejects, thereby contributing to the sustainability of agriculture. This study seeks to advance commercial fruit quality control by comparing hyperspectral image classification algorithms to detect apple lesions caused by pathogens, including sunburn, scab, and rot, on three apple varieties: Honeycrisp, Gala, and Jonagold. The lesions were confirmed independently using expert judgment, real-time PCR, and 3D fluorimetry, providing a high accuracy of ground truth data and allowing conclusions to be drawn on ways to improve the sustainability and safety of the agrocenosis in which the fruits are grown. Hyperspectral imaging combined with mathematical analysis revealed that Venturia inaequalis is the main pathogen responsible for scab, while Botrytis cinerea and Penicillium expansum are the main causes of rot. This comparative study is important because it provides a detailed analysis of the performance of both supervised and unsupervised classification methods for hyperspectral imagery, which is essential for the development of reliable automated grading systems. Support Vector Machines (SVM) proved to be the most accurate, with the highest average adjusted Rand Index (ARI) scores for sunscald (0.789), scab (0.818), and rot (0.854), making it the preferred approach for classifying apple lesions during grading. K-Means performed well for scab (0.786) and rot (0.84) classes, but showed limitations with lower metrics for other lesion types. A design and technological scheme of an optical system for identifying micro- and macro-damage to fruit tissues is proposed, and the dependence of the percentage of apple damage on the rotation frequency of the sorting line rollers is obtained. The optimal values for the rotation frequency of the rollers, at which the damage to apples is less than 5%, are up to 6 Hz. The results of this study confirm the high potential of hyperspectral data for the non-invasive recognition and classification of apple diseases in automated sorting systems with an accuracy comparable to that of human experts. These results provide valuable insights into the optimization of machine learning algorithms for agricultural applications, contributing to the development of more efficient and accurate fruit quality control systems, improved production sustainability, and the long-term storage of fruits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助cenghao采纳,获得10
26秒前
易水完成签到 ,获得积分10
27秒前
33秒前
爆米花应助科研通管家采纳,获得10
47秒前
shhoing应助科研通管家采纳,获得10
47秒前
gexzygg应助科研通管家采纳,获得10
47秒前
cenghao发布了新的文献求助10
47秒前
湘崽丫完成签到 ,获得积分10
51秒前
1分钟前
Yxxx完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
丘比特应助丽海张采纳,获得10
3分钟前
风轻云淡发布了新的文献求助20
3分钟前
3分钟前
丽海张发布了新的文献求助10
3分钟前
丽海张完成签到,获得积分10
4分钟前
Sevense_完成签到,获得积分10
4分钟前
4分钟前
bubulin完成签到,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
sisyphe发布了新的文献求助10
5分钟前
ikouyo完成签到 ,获得积分10
6分钟前
科研通AI6应助hourt2395采纳,获得10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
有机盐应助科研通管家采纳,获得10
6分钟前
hourt2395发布了新的文献求助10
7分钟前
7分钟前
hourt2395完成签到,获得积分20
7分钟前
嘟嘟嘟嘟发布了新的文献求助30
7分钟前
poki完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
所所应助科研通管家采纳,获得10
8分钟前
有机盐应助科研通管家采纳,获得10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
Yini应助科研通管家采纳,获得40
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561515
求助须知:如何正确求助?哪些是违规求助? 4646622
关于积分的说明 14678699
捐赠科研通 4587937
什么是DOI,文献DOI怎么找? 2517258
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461533