Enhancing Sustainable Automated Fruit Sorting: Hyperspectral Analysis and Machine Learning Algorithms

高光谱成像 分类 计算机科学 机器学习 人工智能 算法 排序算法 模式识别(心理学)
作者
Dmitriy Khort,Alexey Kutyrev,Igor Smirnov,Nikita Andriyanov,Rostislav Filippov,Andrey Chilikin,Maxim E. Astashev,Elena A. Molkova,Ruslan M. Sarimov,Tatyana A. Matveeva,Sergey V. Gudkov
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (22): 10084-10084
标识
DOI:10.3390/su162210084
摘要

Recognizing and classifying localized lesions on apple fruit surfaces during automated sorting is critical for improving product quality and increasing the sustainability of fruit production. This study is aimed at developing sustainable methods for fruit sorting by applying hyperspectral analysis and machine learning to improve product quality and reduce losses. The employed hyperspectral technologies and machine learning algorithms enable the rapid and accurate detection of defects on the surface of fruits, enhancing product quality and reducing the number of rejects, thereby contributing to the sustainability of agriculture. This study seeks to advance commercial fruit quality control by comparing hyperspectral image classification algorithms to detect apple lesions caused by pathogens, including sunburn, scab, and rot, on three apple varieties: Honeycrisp, Gala, and Jonagold. The lesions were confirmed independently using expert judgment, real-time PCR, and 3D fluorimetry, providing a high accuracy of ground truth data and allowing conclusions to be drawn on ways to improve the sustainability and safety of the agrocenosis in which the fruits are grown. Hyperspectral imaging combined with mathematical analysis revealed that Venturia inaequalis is the main pathogen responsible for scab, while Botrytis cinerea and Penicillium expansum are the main causes of rot. This comparative study is important because it provides a detailed analysis of the performance of both supervised and unsupervised classification methods for hyperspectral imagery, which is essential for the development of reliable automated grading systems. Support Vector Machines (SVM) proved to be the most accurate, with the highest average adjusted Rand Index (ARI) scores for sunscald (0.789), scab (0.818), and rot (0.854), making it the preferred approach for classifying apple lesions during grading. K-Means performed well for scab (0.786) and rot (0.84) classes, but showed limitations with lower metrics for other lesion types. A design and technological scheme of an optical system for identifying micro- and macro-damage to fruit tissues is proposed, and the dependence of the percentage of apple damage on the rotation frequency of the sorting line rollers is obtained. The optimal values for the rotation frequency of the rollers, at which the damage to apples is less than 5%, are up to 6 Hz. The results of this study confirm the high potential of hyperspectral data for the non-invasive recognition and classification of apple diseases in automated sorting systems with an accuracy comparable to that of human experts. These results provide valuable insights into the optimization of machine learning algorithms for agricultural applications, contributing to the development of more efficient and accurate fruit quality control systems, improved production sustainability, and the long-term storage of fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的衬衫应助JiaqiLiu采纳,获得10
刚刚
科研通AI2S应助VDC采纳,获得10
刚刚
wwt发布了新的文献求助10
刚刚
务实大船完成签到,获得积分10
1秒前
蜗牛撵大象完成签到,获得积分10
1秒前
2秒前
sun发布了新的文献求助10
2秒前
2秒前
二二二发布了新的文献求助10
3秒前
开心的傲安完成签到,获得积分20
3秒前
麻麻完成签到,获得积分20
3秒前
DDTT完成签到,获得积分10
4秒前
霸气的念云完成签到,获得积分10
4秒前
Orange应助欢呼小蚂蚁采纳,获得10
4秒前
4秒前
SQ完成签到,获得积分10
5秒前
5秒前
飞跃海龙完成签到 ,获得积分10
5秒前
ufuon发布了新的文献求助10
6秒前
momo完成签到,获得积分10
7秒前
赘婿应助二二二采纳,获得10
7秒前
JamesPei应助HongJiang采纳,获得10
7秒前
clarkq完成签到,获得积分10
8秒前
orixero应助LIU采纳,获得10
8秒前
经法发布了新的文献求助10
8秒前
不吃橘子完成签到,获得积分10
8秒前
Cheryy完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
ding应助哈哈哈哈采纳,获得10
10秒前
Draeck发布了新的文献求助10
10秒前
kingwhitewing发布了新的文献求助10
10秒前
11秒前
clarkq发布了新的文献求助10
11秒前
11秒前
GGZ完成签到,获得积分10
11秒前
15860936613完成签到 ,获得积分10
11秒前
可爱的函函应助a方舟采纳,获得10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678