Time-frequency synchronisation contrastive learning-driven multi-sensor remaining useful life prediction

计算机科学 人工智能 材料科学
作者
Li Jiang,Miaojun Wang,Peng-Sheng You,Xin Zhang
出处
期刊:Nondestructive Testing and Evaluation [Informa]
卷期号:: 1-28
标识
DOI:10.1080/10589759.2025.2450063
摘要

Deep learning techniques play a crucial role in predicting the remaining useful life (RUL) of mechanical equipment. Nevertheless, obtaining a substantial number of labeled samples is a challenge, and the prediction accuracy tends to decline when the labeled samples are insufficient. Moreover, existing RUL prediction methods usually extract the degradation characteristics only from one single domain, which is insufficient for a high-accuracy prediction. To address these challenges, a time-frequency synchronization contrastive learning-driven (TFSCL) multi-sensor remaining useful life prediction model is proposed. The proposed TFSCL utilizes a large amount of unlabeled data for model pre-training and key feature extraction, and it introduces a novel time-frequency fusion contrastive loss function to optimize the pre-training process. It employs a dual-channel structure at the sensor and timestamp levels, incorporating an attention mechanism that adaptively adjusts sensor feature weights, enabling more accurate extraction of critical information while effectively mitigating interference from irrelevant data. To validate the effectiveness of the proposed TFSCL, two case studies are conducted, with different labeling ratios being used. The experimental results demonstrate that even with lower labeling ratios, the proposed TFSCL model still achieves a satisfactory prediction effect and outperforms other advanced methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助潘半青采纳,获得10
刚刚
3秒前
6秒前
子夜007发布了新的文献求助30
6秒前
过期牛奶坏肚子完成签到,获得积分10
6秒前
7秒前
7秒前
月下完成签到,获得积分10
9秒前
晶晶妹妹发布了新的文献求助10
10秒前
11秒前
11秒前
sal完成签到 ,获得积分20
12秒前
芝华士完成签到 ,获得积分10
12秒前
尾状叶完成签到,获得积分10
12秒前
李lll发布了新的文献求助10
13秒前
宜醉宜游宜睡应助三金采纳,获得10
14秒前
bjyx发布了新的文献求助10
14秒前
OAO发布了新的文献求助10
14秒前
15秒前
15秒前
李健应助日拱一卒采纳,获得10
15秒前
Hello应助heisa采纳,获得10
16秒前
吴青应助卤笋采纳,获得10
19秒前
卡皮巴拉发布了新的文献求助10
20秒前
21秒前
丘比特应助李lll采纳,获得10
22秒前
23秒前
23秒前
25秒前
Return应助三金采纳,获得10
26秒前
FY发布了新的文献求助10
26秒前
26秒前
小太阳发布了新的文献求助10
28秒前
28秒前
28秒前
29秒前
CC完成签到,获得积分10
30秒前
30秒前
30秒前
王海涛发布了新的文献求助10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644