已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Applying neural machine translation and ChatGPT in the teaching of business English writing

凝聚力(化学) 计算机科学 机器翻译 维数(图论) 学术写作 数学教育 语法 人工智能 心理学 数学 化学 有机化学 纯数学
作者
Jun Xu,Qingran Wang
出处
期刊:Translation and translanguaging in multilingual contexts [John Benjamins Publishing Company]
卷期号:11 (1): 88-110 被引量:1
标识
DOI:10.1075/ttmc.00155.xu
摘要

Abstract As language teaching becomes more complex and diverse, there has been a rapid increase in the demand for advanced technology, driving the widespread adoption of neural machine translation (NMT) and ChatGPT in the field. This study contributes to the literature on the use of technology in language teaching by evaluating the application of NMT technology and ChatGPT in teaching English as a foreign language (EFL) writing in three business fields: finance, economics, and business administration. By building six comparable corpora consisting of students’ direct-writing and post-edited writing based on machine-translated texts, we examined whether NMT can help improve students’ performance in business English writing classes, and whether ChatGPT can complement NMT. Our statistical analyses show that in general, NMT can enhance the proficiency of students’ academic writing, but its improvement effect works on different dimensions for those students studying in different majors. Specifically, for finance students, NMT can improve their academic writing at the word and syntax levels and mechanics, while it harms the organizational dimension. For students in economics, the improvement effect of NMT mainly focuses on enhancing the dimensions of syntax, cohesion, and mechanics, whereas for students in business administration, NMT works primarily on the dimensions of content, cohesion, and mechanics. As for the dimensions where NMT performs poorly, our analysis of students’ essay writing shows that ChatGPT can complement NMT by making improvements and providing feedback to students. Our paper adds value to existing research on the use of technology in language teaching by investigating the application of NMT and ChatGPT in teaching EFL writing, and by proposing potential directions for their use in the teaching of writing business English.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浑灵安完成签到 ,获得积分10
1秒前
2秒前
6秒前
7秒前
ding应助fgh采纳,获得10
7秒前
路灯下的小pn完成签到,获得积分10
9秒前
黄俊发布了新的文献求助10
9秒前
fd163c应助罐装采纳,获得10
11秒前
13秒前
别说话发布了新的文献求助10
14秒前
16秒前
Orange发布了新的文献求助10
19秒前
星叶完成签到 ,获得积分10
21秒前
绪方发布了新的文献求助10
22秒前
23秒前
柯云发布了新的文献求助10
27秒前
27秒前
28秒前
顾矜应助苦衷乐采纳,获得10
29秒前
海豚发布了新的文献求助10
31秒前
ding应助筱筱O采纳,获得10
32秒前
fgh发布了新的文献求助10
35秒前
欣欣完成签到,获得积分10
37秒前
张兔兔完成签到,获得积分10
38秒前
山山而川完成签到 ,获得积分10
38秒前
烟花应助罐装采纳,获得10
38秒前
freshfire完成签到 ,获得积分10
39秒前
别说话完成签到,获得积分10
41秒前
爱听歌的悒完成签到 ,获得积分10
42秒前
健忘蘑菇完成签到,获得积分10
45秒前
西一阿铭完成签到,获得积分10
46秒前
北方完成签到,获得积分10
47秒前
热心语柔完成签到 ,获得积分10
49秒前
wonder完成签到 ,获得积分10
49秒前
53秒前
棉花糖完成签到 ,获得积分10
55秒前
58秒前
0000完成签到 ,获得积分10
59秒前
59秒前
局外人发布了新的文献求助10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733300
求助须知:如何正确求助?哪些是违规求助? 3277481
关于积分的说明 10002745
捐赠科研通 2993353
什么是DOI,文献DOI怎么找? 1642672
邀请新用户注册赠送积分活动 780574
科研通“疑难数据库(出版商)”最低求助积分说明 748908