医学
组织学
回顾性队列研究
乳腺癌
多中心研究
癌症
肿瘤科
人工智能
内科学
随机对照试验
计算机科学
作者
Xiangyang Zhang,Yang Chen,Changjing Cai,Yifeng Wang,Jun Tan,Zijie Fang,Wei Le,Zhuchen Shao,Liwen Wang,Tiezheng Qi,Yihan Liu,Zhaohui Jiang,Li Yin,Ying Han,Tibera K. Rugambwa,Shan Zeng,Haoqian Wang,Hong Shen,Yongbing Zhang
标识
DOI:10.1097/js9.0000000000002220
摘要
Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.
科研通智能强力驱动
Strongly Powered by AbleSci AI