UEFL: Universal and Efficient Privacy-Preserving Federated Learning

计算机科学 信息隐私 差别隐私 计算机安全 计算机网络 互联网隐私 理论计算机科学 数据挖掘
作者
Zhiqiang Li,Haiyong Bao,Hao Pan,Menghong Guan,Cheng Huang,Hong‐Ning Dai
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jiot.2025.3525731
摘要

Federated Learning (FL) is a distributed machine learning framework that allows for model training across multiple clients without requiring access to their local data. However, FL poses some risks, for example, curious clients might conduct inference attacks (e.g., membership inference attacks, model-inversion attacks) to extract sensitive information from other participants. Existing solutions typically fail to strike a good balance between performance and privacy, or are only applicable to specific FL scenarios. To address these challenges, we propose a universal and efficient privacy-preserving FL framework based on matrix theory. Specifically, we design the Improved Extended Hill Cryptosystem (IEHC), which efficiently encrypts model parameters while supporting the secure ReLU function. To accommodate different training tasks, we design the Secure Loss Function Computation (SLFC) protocol, which computes derivatives of various loss functions while maintaining data privacy of both client and server. And we implement SLFC specifically for three classic loss functions, including MSE, Cross Entropy, and L1. Extensive experimental results demonstrate that our approach robustly defends against various inference attacks. Furthermore, model training experiments conducted in various FL scenarios indicate that our method shows significant advantages across most metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一天一篇sci完成签到,获得积分10
1秒前
莉莉丝完成签到,获得积分20
1秒前
1秒前
叶子完成签到,获得积分10
2秒前
2秒前
hopen发布了新的文献求助10
3秒前
3秒前
Grin发布了新的文献求助10
4秒前
隐形曼青应助欣慰秋蝶采纳,获得10
4秒前
杭苑博发布了新的文献求助30
4秒前
三徙教发布了新的文献求助10
4秒前
彼岸发布了新的文献求助30
5秒前
Wshtiiiii发布了新的文献求助10
5秒前
打打应助HJJHJH采纳,获得10
5秒前
搞怪薯片发布了新的文献求助10
5秒前
乐观寒珊发布了新的文献求助30
6秒前
6秒前
Jasper应助大淘采纳,获得10
6秒前
默默懿轩完成签到,获得积分10
6秒前
莉莉丝发布了新的文献求助10
6秒前
hhh发布了新的文献求助10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
科研通AI5应助ZS采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
丘比特应助笙璃采纳,获得10
7秒前
liu发布了新的文献求助20
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
无名老大应助科研通管家采纳,获得30
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
zino发布了新的文献求助10
8秒前
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514020
求助须知:如何正确求助?哪些是违规求助? 3096358
关于积分的说明 9231395
捐赠科研通 2791445
什么是DOI,文献DOI怎么找? 1531886
邀请新用户注册赠送积分活动 711660
科研通“疑难数据库(出版商)”最低求助积分说明 706931