多孔性
甲烷
材料科学
吸附
金属有机骨架
背景(考古学)
天然气
化学工程
连锁
氢气储存
锆
巴(单位)
纳米技术
复合材料
化学
有机化学
冶金
气象学
古生物学
工程类
物理
生物
DNA
生物化学
合金
作者
Si Ma,Le Shi,Yuanlong Zhong,Honghao Cao,Zhenning Yang,Jian Yang,Kun Wang,Zhijie Chen
出处
期刊:Small
[Wiley]
日期:2024-11-22
标识
DOI:10.1002/smll.202409138
摘要
Abstract The liquefied natural gas and adsorbed natural gas (LNG‐ANG) coupling systems are emerging as an attractive solution to solve boil‐off gases generated by LNG tanks. Metal‐organic frameworks (MOFs) are promising candidates for methane storage and delivery owing to their high porosity, large specific surface area, and tunable pore structures. However, systematically tuning LNG‐ANG‐related methane adsorption performance of MOFs has yet to be explored. In this context, an interpenetrated zirconium‐based (3,8)‐connected the ‐MOF, Zr‐TTB‐1, with limited porosity is synthesized. The further delicate modulation of reaction conditions allows the assembly of a non‐interpenetrated counterpart, Zr‐TTB‐2, with significantly improved porosity. Such molecular‐level catenation control results in a substantial increase in low‐temperature methane adsorption performance related to LNG‐ANG. The volumetric working capacity of non‐interpenetrated Zr‐TTB‐2 is up to 255 cm 3 (standard temperature and pressure, STP) cm −3 under LNG‐ANG condition (159 K, 6 bar, and 298 K, 5 bar), outperforms more than twice that of interpenetrated counterpart—Zr‐TTB‐1 (115 cm 3 (STP) cm −3 ). To this end, the investigation provides an efficacious example of regulating the methane working capacity in LNG‐ANG systems through molecular‐level structural control of designed porous frameworks.
科研通智能强力驱动
Strongly Powered by AbleSci AI