Path Planning and Motion Control of Robot Dog Through Rough Terrain Based on Vision Navigation

运动规划 地形 计算机视觉 计算机科学 人工智能 机器人 路径(计算) 移动机器人导航 控制(管理) 运动(物理) 移动机器人 地理 机器人控制 地图学 程序设计语言
作者
Tianxiang Chen,Yipeng Huangfu,Sutthiphong Srigrarom,Boo Cheong Khoo
出处
期刊:Sensors [MDPI AG]
卷期号:24 (22): 7306-7306
标识
DOI:10.3390/s24227306
摘要

This article delineates the enhancement of an autonomous navigation and obstacle avoidance system for a quadruped robot dog. Part one of this paper presents the integration of a sophisticated multi-level dynamic control framework, utilizing Model Predictive Control (MPC) and Whole-Body Control (WBC) from MIT Cheetah. The system employs an Intel RealSense D435i depth camera for depth vision-based navigation, which enables high-fidelity 3D environmental mapping and real-time path planning. A significant innovation is the customization of the EGO-Planner to optimize trajectory planning in dynamically changing terrains, coupled with the implementation of a multi-body dynamics model that significantly improves the robot’s stability and maneuverability across various surfaces. The experimental results show that the RGB-D system exhibits superior velocity stability and trajectory accuracy to the SLAM system, with a 20% reduction in the cumulative velocity error and a 10% improvement in path tracking precision. The experimental results also show that the RGB-D system achieves smoother navigation, requiring 15% fewer iterations for path planning, and a 30% faster success rate recovery in challenging environments. The successful application of these technologies in simulated urban disaster scenarios suggests promising future applications in emergency response and complex urban environments. Part two of this paper presents the development of a robust path planning algorithm for a robot dog on a rough terrain based on attached binocular vision navigation. We use a commercial-of-the-shelf (COTS) robot dog. An optical CCD binocular vision dynamic tracking system is used to provide environment information. Likewise, the pose and posture of the robot dog are obtained from the robot’s own sensors, and a kinematics model is established. Then, a binocular vision tracking method is developed to determine the optimal path, provide a proposal (commands to actuators) of the position and posture of the bionic robot, and achieve stable motion on tough terrains. The terrain is assumed to be a gentle uneven terrain to begin with and subsequently proceeds to a more rough surface. This work consists of four steps: (1) pose and position data are acquired from the robot dog’s own inertial sensors, (2) terrain and environment information is input from onboard cameras, (3) information is fused (integrated), and (4) path planning and motion control proposals are made. Ultimately, this work provides a robust framework for future developments in the vision-based navigation and control of quadruped robots, offering potential solutions for navigating complex and dynamic terrains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucky发布了新的文献求助10
刚刚
FashionBoy应助自信安荷采纳,获得10
1秒前
cc完成签到,获得积分10
1秒前
古德叁叁完成签到,获得积分10
2秒前
2秒前
2秒前
酷波er应助橙子采纳,获得10
3秒前
yaoyaoyu完成签到 ,获得积分10
3秒前
苏棋棋完成签到 ,获得积分10
3秒前
4秒前
4秒前
Kevin Huang发布了新的文献求助10
5秒前
小桃子完成签到,获得积分10
6秒前
Shaynin完成签到,获得积分10
6秒前
我是老大应助HaohaoLi采纳,获得50
7秒前
司徒诗蕾发布了新的文献求助40
8秒前
8秒前
8秒前
lililil发布了新的文献求助10
8秒前
8秒前
weixuefeng完成签到,获得积分10
9秒前
sugawife发布了新的文献求助10
9秒前
esther颖完成签到,获得积分10
9秒前
曾丸子发布了新的文献求助10
9秒前
快乐听南完成签到 ,获得积分10
9秒前
10秒前
苏苏完成签到,获得积分10
10秒前
Kevin Huang完成签到,获得积分10
10秒前
小桃子发布了新的文献求助10
11秒前
jackeylee99999完成签到,获得积分20
11秒前
小杜发布了新的文献求助10
13秒前
13秒前
锅巴发布了新的文献求助10
13秒前
任伟超发布了新的文献求助10
14秒前
14秒前
lcdamoy完成签到,获得积分10
15秒前
15秒前
blackbody发布了新的文献求助10
15秒前
香蕉觅云应助ZHANGJUN采纳,获得10
15秒前
彭于晏应助lililil采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298177
求助须知:如何正确求助?哪些是违规求助? 4446830
关于积分的说明 13840537
捐赠科研通 4332075
什么是DOI,文献DOI怎么找? 2378018
邀请新用户注册赠送积分活动 1373297
关于科研通互助平台的介绍 1338861