亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Path Planning and Motion Control of Robot Dog Through Rough Terrain Based on Vision Navigation

运动规划 地形 计算机视觉 计算机科学 人工智能 机器人 路径(计算) 移动机器人导航 控制(管理) 运动(物理) 移动机器人 地理 机器人控制 地图学 程序设计语言
作者
Tianxiang Chen,Yipeng Huangfu,Sutthiphong Srigrarom,Boo Cheong Khoo
出处
期刊:Sensors [MDPI AG]
卷期号:24 (22): 7306-7306
标识
DOI:10.3390/s24227306
摘要

This article delineates the enhancement of an autonomous navigation and obstacle avoidance system for a quadruped robot dog. Part one of this paper presents the integration of a sophisticated multi-level dynamic control framework, utilizing Model Predictive Control (MPC) and Whole-Body Control (WBC) from MIT Cheetah. The system employs an Intel RealSense D435i depth camera for depth vision-based navigation, which enables high-fidelity 3D environmental mapping and real-time path planning. A significant innovation is the customization of the EGO-Planner to optimize trajectory planning in dynamically changing terrains, coupled with the implementation of a multi-body dynamics model that significantly improves the robot’s stability and maneuverability across various surfaces. The experimental results show that the RGB-D system exhibits superior velocity stability and trajectory accuracy to the SLAM system, with a 20% reduction in the cumulative velocity error and a 10% improvement in path tracking precision. The experimental results also show that the RGB-D system achieves smoother navigation, requiring 15% fewer iterations for path planning, and a 30% faster success rate recovery in challenging environments. The successful application of these technologies in simulated urban disaster scenarios suggests promising future applications in emergency response and complex urban environments. Part two of this paper presents the development of a robust path planning algorithm for a robot dog on a rough terrain based on attached binocular vision navigation. We use a commercial-of-the-shelf (COTS) robot dog. An optical CCD binocular vision dynamic tracking system is used to provide environment information. Likewise, the pose and posture of the robot dog are obtained from the robot’s own sensors, and a kinematics model is established. Then, a binocular vision tracking method is developed to determine the optimal path, provide a proposal (commands to actuators) of the position and posture of the bionic robot, and achieve stable motion on tough terrains. The terrain is assumed to be a gentle uneven terrain to begin with and subsequently proceeds to a more rough surface. This work consists of four steps: (1) pose and position data are acquired from the robot dog’s own inertial sensors, (2) terrain and environment information is input from onboard cameras, (3) information is fused (integrated), and (4) path planning and motion control proposals are made. Ultimately, this work provides a robust framework for future developments in the vision-based navigation and control of quadruped robots, offering potential solutions for navigating complex and dynamic terrains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开拖拉机的芍药完成签到 ,获得积分10
2秒前
ROMANTIC完成签到 ,获得积分10
7秒前
8秒前
Lucas应助开朗灵萱采纳,获得10
11秒前
YUE66完成签到,获得积分10
18秒前
20秒前
开朗灵萱发布了新的文献求助10
25秒前
情怀应助奋斗的马里奥采纳,获得10
34秒前
传奇3应助开朗灵萱采纳,获得10
42秒前
Richard完成签到,获得积分10
44秒前
monica完成签到 ,获得积分10
55秒前
Jessica完成签到,获得积分10
1分钟前
orixero应助飞常爱你哦采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
浮岫发布了新的文献求助10
1分钟前
浮岫完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
rebeycca发布了新的文献求助10
2分钟前
奋斗的马里奥完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
lei完成签到,获得积分20
3分钟前
跳跃紫真完成签到,获得积分10
3分钟前
CodeCraft应助lei采纳,获得10
3分钟前
大玉124完成签到 ,获得积分10
3分钟前
3分钟前
刘菲特1发布了新的文献求助10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
yr应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780432
求助须知:如何正确求助?哪些是违规求助? 5655379
关于积分的说明 15453107
捐赠科研通 4911067
什么是DOI,文献DOI怎么找? 2643243
邀请新用户注册赠送积分活动 1590906
关于科研通互助平台的介绍 1545439