Path Planning and Motion Control of Robot Dog Through Rough Terrain Based on Vision Navigation

运动规划 地形 计算机视觉 计算机科学 人工智能 机器人 路径(计算) 移动机器人导航 控制(管理) 运动(物理) 移动机器人 地理 机器人控制 地图学 程序设计语言
作者
Tianxiang Chen,Yipeng Huangfu,Sutthiphong Srigrarom,Boo Cheong Khoo
出处
期刊:Sensors [MDPI AG]
卷期号:24 (22): 7306-7306
标识
DOI:10.3390/s24227306
摘要

This article delineates the enhancement of an autonomous navigation and obstacle avoidance system for a quadruped robot dog. Part one of this paper presents the integration of a sophisticated multi-level dynamic control framework, utilizing Model Predictive Control (MPC) and Whole-Body Control (WBC) from MIT Cheetah. The system employs an Intel RealSense D435i depth camera for depth vision-based navigation, which enables high-fidelity 3D environmental mapping and real-time path planning. A significant innovation is the customization of the EGO-Planner to optimize trajectory planning in dynamically changing terrains, coupled with the implementation of a multi-body dynamics model that significantly improves the robot’s stability and maneuverability across various surfaces. The experimental results show that the RGB-D system exhibits superior velocity stability and trajectory accuracy to the SLAM system, with a 20% reduction in the cumulative velocity error and a 10% improvement in path tracking precision. The experimental results also show that the RGB-D system achieves smoother navigation, requiring 15% fewer iterations for path planning, and a 30% faster success rate recovery in challenging environments. The successful application of these technologies in simulated urban disaster scenarios suggests promising future applications in emergency response and complex urban environments. Part two of this paper presents the development of a robust path planning algorithm for a robot dog on a rough terrain based on attached binocular vision navigation. We use a commercial-of-the-shelf (COTS) robot dog. An optical CCD binocular vision dynamic tracking system is used to provide environment information. Likewise, the pose and posture of the robot dog are obtained from the robot’s own sensors, and a kinematics model is established. Then, a binocular vision tracking method is developed to determine the optimal path, provide a proposal (commands to actuators) of the position and posture of the bionic robot, and achieve stable motion on tough terrains. The terrain is assumed to be a gentle uneven terrain to begin with and subsequently proceeds to a more rough surface. This work consists of four steps: (1) pose and position data are acquired from the robot dog’s own inertial sensors, (2) terrain and environment information is input from onboard cameras, (3) information is fused (integrated), and (4) path planning and motion control proposals are made. Ultimately, this work provides a robust framework for future developments in the vision-based navigation and control of quadruped robots, offering potential solutions for navigating complex and dynamic terrains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚c发布了新的文献求助10
刚刚
刚刚
饭宝发布了新的文献求助10
1秒前
SciGPT应助大胆的期待采纳,获得10
1秒前
奋斗夏烟完成签到,获得积分20
1秒前
气泡水完成签到 ,获得积分10
1秒前
rosy完成签到,获得积分10
2秒前
rjy完成签到 ,获得积分10
2秒前
3秒前
沙111发布了新的文献求助10
3秒前
MADKAI发布了新的文献求助10
3秒前
4秒前
zhoull完成签到 ,获得积分10
4秒前
4秒前
4秒前
学术蝗虫发布了新的文献求助10
4秒前
aurora完成签到,获得积分10
5秒前
bopbopbaby发布了新的文献求助200
5秒前
sll完成签到,获得积分10
5秒前
犹豫的一斩应助迅速冰岚采纳,获得10
5秒前
聂裕铭完成签到 ,获得积分10
5秒前
谦让成协完成签到,获得积分10
6秒前
6秒前
大个应助侦察兵采纳,获得10
6秒前
科研通AI5应助猪猪hero采纳,获得10
6秒前
6秒前
6秒前
WilsonT完成签到,获得积分10
6秒前
SDS发布了新的文献求助10
7秒前
LLL发布了新的文献求助10
7秒前
爆米花应助娜行采纳,获得10
8秒前
8秒前
虫二队长完成签到,获得积分10
8秒前
8秒前
manan发布了新的文献求助10
8秒前
铸一字错完成签到,获得积分10
8秒前
8秒前
诚c完成签到,获得积分10
8秒前
正在输入中应助niu1采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678