Vehicle Flow Detection and Tracking Based on an Improved YOLOv8n and ByteTrack Framework

跟踪(教育) 计算机科学 流量(数学) 人工智能 心理学 机械 物理 教育学
作者
Jinjiang Liu,Yonghua Xie,Yanwen Zhang,Haoming Li
出处
期刊:World Electric Vehicle Journal [Multidisciplinary Digital Publishing Institute]
卷期号:16 (1): 13-13
标识
DOI:10.3390/wevj16010013
摘要

Vehicle flow detection and tracking are crucial components of intelligent transportation systems. However, traditional methods often struggle with challenges such as the poor detection of small objects and low efficiency when processing large-scale data. To address these issues, this paper proposes a vehicle flow detection and tracking method that integrates an improved YOLOv8n model with the ByteTrack algorithm. In the detection module, we introduce the innovative MSN-YOLO model, which combines the C2f_MLCA module, the Detect_SEAM module, and the NWD loss function to enhance feature fusion and improve cross-scale information processing. These enhancements significantly boost the model’s ability to detect small objects and handle complex backgrounds. In the tracking module, we incorporate the ByteTrack algorithm and train unique vehicle re-identification (Re-ID) features, ensuring robust multi-object tracking in complex environments and improving the stability and accuracy of vehicle flow tracking. The experimental results demonstrate that the proposed method achieves a mean Average Precision (mAP) of 62.8% at IoU = 0.50 and a Multiple Object Tracking Accuracy (MOTA) of 72.16% in real-time tracking. These improvements represent increases of 2.7% and 3.16%, respectively, compared to baseline algorithms. This method provides effective technical support for intelligent traffic management, traffic flow monitoring, and congestion prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拉基发布了新的文献求助10
刚刚
1秒前
Mure完成签到,获得积分10
1秒前
1秒前
星辰大海应助Hh采纳,获得10
2秒前
思源应助xm采纳,获得10
2秒前
浮游应助suki采纳,获得10
2秒前
Cassie发布了新的文献求助20
3秒前
FashionBoy应助Hhh采纳,获得10
3秒前
4秒前
xiaobei完成签到,获得积分10
4秒前
江夏清发布了新的文献求助10
5秒前
乐乐应助吕佳采纳,获得10
5秒前
starlight完成签到,获得积分10
5秒前
晚意意意意意完成签到 ,获得积分10
5秒前
vlots应助Mure采纳,获得30
6秒前
进击的然完成签到,获得积分10
7秒前
无限的雨梅完成签到 ,获得积分10
7秒前
7秒前
9秒前
小二郎应助Qingzhu采纳,获得20
10秒前
11秒前
彭于晏应助tdw采纳,获得10
11秒前
小张完成签到,获得积分10
12秒前
西卡发布了新的文献求助80
12秒前
留胡子的半仙完成签到,获得积分10
13秒前
Hh发布了新的文献求助10
15秒前
ding应助江夏清采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得30
15秒前
田様应助科研通管家采纳,获得10
15秒前
15秒前
bkagyin应助科研通管家采纳,获得30
15秒前
大模型应助科研通管家采纳,获得10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
16秒前
GPTea应助科研通管家采纳,获得50
16秒前
zcl应助科研通管家采纳,获得50
16秒前
田様应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
Wolbachia-mediated fitness enhancement and reproductive manipulation in the South American tomato pinworm, Tuta absoluta 400
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5099954
求助须知:如何正确求助?哪些是违规求助? 4311671
关于积分的说明 13435039
捐赠科研通 4139196
什么是DOI,文献DOI怎么找? 2267817
邀请新用户注册赠送积分活动 1270729
关于科研通互助平台的介绍 1207081