Vehicle Flow Detection and Tracking Based on an Improved YOLOv8n and ByteTrack Framework

跟踪(教育) 计算机科学 流量(数学) 人工智能 心理学 机械 物理 教育学
作者
Jinjiang Liu,Yonghua Xie,Yanwen Zhang,Haoming Li
出处
期刊:World Electric Vehicle Journal [Multidisciplinary Digital Publishing Institute]
卷期号:16 (1): 13-13
标识
DOI:10.3390/wevj16010013
摘要

Vehicle flow detection and tracking are crucial components of intelligent transportation systems. However, traditional methods often struggle with challenges such as the poor detection of small objects and low efficiency when processing large-scale data. To address these issues, this paper proposes a vehicle flow detection and tracking method that integrates an improved YOLOv8n model with the ByteTrack algorithm. In the detection module, we introduce the innovative MSN-YOLO model, which combines the C2f_MLCA module, the Detect_SEAM module, and the NWD loss function to enhance feature fusion and improve cross-scale information processing. These enhancements significantly boost the model’s ability to detect small objects and handle complex backgrounds. In the tracking module, we incorporate the ByteTrack algorithm and train unique vehicle re-identification (Re-ID) features, ensuring robust multi-object tracking in complex environments and improving the stability and accuracy of vehicle flow tracking. The experimental results demonstrate that the proposed method achieves a mean Average Precision (mAP) of 62.8% at IoU = 0.50 and a Multiple Object Tracking Accuracy (MOTA) of 72.16% in real-time tracking. These improvements represent increases of 2.7% and 3.16%, respectively, compared to baseline algorithms. This method provides effective technical support for intelligent traffic management, traffic flow monitoring, and congestion prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
5秒前
6秒前
小马过河应助尼尼采纳,获得10
8秒前
8秒前
8秒前
吾将上下而求索完成签到,获得积分10
8秒前
8秒前
8秒前
科研通AI2S应助LIN采纳,获得10
9秒前
9秒前
9秒前
喜悦的半青完成签到,获得积分10
9秒前
10秒前
好宝宝发布了新的文献求助10
11秒前
上官若男应助程艳采纳,获得80
11秒前
伊可创发布了新的文献求助10
12秒前
Ava应助szh123采纳,获得10
13秒前
锦七发布了新的文献求助10
13秒前
小二郎应助收手吧大哥采纳,获得10
15秒前
16秒前
在水一方应助lm采纳,获得10
16秒前
可爱的函函应助jingjingA采纳,获得10
16秒前
Zdh同学完成签到,获得积分10
17秒前
我是老大应助淡然的铭采纳,获得10
18秒前
girl完成签到,获得积分10
19秒前
20秒前
华仔应助HAHAHA采纳,获得10
20秒前
20秒前
小坤同学发布了新的文献求助10
21秒前
22秒前
musejie应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
quhayley应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
Jasper应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021