灵敏度(控制系统)
四面体
DNA
干扰(通信)
化学
纳米技术
色谱法
生物物理学
材料科学
生物
计算机科学
工程类
结晶学
生物化学
电子工程
电信
频道(广播)
作者
Naiyue Zhang,Siting Fu,Peter P. Fu,Xiaowen Xu
出处
期刊:Langmuir
[American Chemical Society]
日期:2025-01-10
标识
DOI:10.1021/acs.langmuir.4c04663
摘要
The lateral flow assay is a strip-based analytical method for the portable and convenient detection of analytes of interest. It has the advantages of visual observation, autonomous sample flow, fast coloration time, minimal tedious operation procedures, and reliance on specialized instruments. However, the rough surface of the nitrocellulose membrane renders it difficult for the immobilized nucleic acids to remain in an ordered arrangement, and the immobilized nucleic acids are also liable to be digested in a complex matrix, inducing limited sensitivity and anti-interference. In this work, we demonstrate that the decoration of DNA nanostructures on lateral flow strips can improve assay sensitivity and anti-interference in comparison with commonly studied single-stranded DNA-disposed strips. DNA nanostructures enable probes to be more orderly and arranged on the strip and provide protection. Using adenosine 5'-triphosphate (ATP) as an analyte, a DNA tetrahedron reformative lateral flow strip has increased sensitivity and improved reliability in detection. The DNA nanostructure-decorated lateral flow strip is further successfully applied for ATP detection in real samples, such as bacterium testing and tableware cleanliness checking, by detection of the ATP content therein.
科研通智能强力驱动
Strongly Powered by AbleSci AI