阳极
材料科学
亥姆霍兹自由能
储能
锌
化学工程
化学物理
水溶液
电极
热力学
冶金
物理化学
物理
化学
功率(物理)
工程类
作者
Xinhua Zheng,Bibo Han,Jifei Sun,Pengxian Lu,Xiaowei Liang,Song Wu,Mingyan Chuai,Faxing Wang,Shikai Liu,Yuping Wu
标识
DOI:10.1002/adfm.202420434
摘要
Abstract Aqueous zinc (Zn) batteries hold significant promise as large‐scale energy storage solutions aimed at mitigating the intermittency of renewable energy. Nevertheless, the Zn anode is plagued by a series of adverse reactions, hindering the development of Zn batteries toward practical applications. Herein, the concept of polyetheramine nematic spatial effects that reshape the inner and outer Helmholtz planes to stabilize Zn anode is introduced. Theoretical calculations and characterizations confirm that the reshaped Helmholtz planes exhibit a water/suflate‐repulsive and homogeneous Zn 2+ transport interface, enabling a highly stable Zn anode for energetic Zn batteries. Consequently, the anode‐free Zn half‐cells under the nematic spatial effects of polyetheramine achieve highly stable cycling over 390 h at an areal capacity of 50 mAh cm −2 and over 1500 h at 10 mAh cm −2 . The constructed Zn‐V 2 O 5 and Zn‐MnO 2 batteries exhibit stable cycle performance over 1000 and 2000 cycles, respectively. Importantly, the enlarged Zn‐MnO 2 pouch cell with a capacity of 300 mAh demonstrates a specific capacity of 176 mAh g −1 after stable 300 cycles. Moreover, the constructed Zn‐MnO 2 pouch cell displays a successful integration with photovoltaic panels along with notable safety features. This superior electrical double‐layer regulation strategy offers valuable insights into the development of practical Zn batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI