An effective T-cells separation method in an acoustofluidic platform using a concave–convex electrode design

微通道 物理 微流控 测距 体积流量 炸薯条 振幅 声学 机械 电子工程 电气工程 光学 计算机科学 电信 工程类 热力学
作者
Pouya Khorshidian,Mohammad Zabetian Targhi,Sara Darbari,Behdad Barahimi
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (6) 被引量:1
标识
DOI:10.1063/5.0208561
摘要

This study addresses the growing interest in developing new acoustophoresis designs for efficient particle separation, introducing a novel concave–convex electrode design for lymphocyte separation. Initially, a numerical model for acoustophoresis was employed and validated against existing experimental results in the literature with a 4% variance, based on the finite element method. Furthermore, in order to ensure the accuracy of the performed simulations, a mesh independency approach was employed for the piezoelectric substrate, alongside an investigation into resonant frequencies across the computational domain. These analyses were conducted to ensure that the results approximate experimental findings more closely and identify the frequency at which the maximum surface displacement occurs, making the results empirically reliable. As a major innovation, a new concentric concave–convex electrode design was introduced, and then the separation distance of targeted particles, as the goal parameter, was studied relative to the geometrical design and acoustofluidic operation parameters of the microfluidic chip. Through numerical analysis, the flow rate ranging from 7 to 14 μl/min and the applied radio frequency signal amplitude ranging from 16 to 26 V were investigated simultaneously. Results demonstrated the microfluidic chip's capability to function effectively across the entire range of voltage and flow rates examined. At the chip's highest operational point, with a flow rate of 13 μl/min and an applied radio frequency signal amplitude of 24 V, particle separation distance reached up to 380 μm. Under similar flow rates, cell conditions, and microchannel length, the particle separation distance has been improved by about 26% as compared with the standard electrode pattern, revealing a significant enhancement in separation efficiency and output purity. Moreover, due to the predominantly radial propagation of the acoustic waves and the expanding acoustic aperture, the resultant standing wave pattern spans a greater length of the microchannel. Assuming a constant injection velocity, this consequently extends the effective exposure time of particles to the acoustic radiation force, allowing for an increase in Stokes drag force. Given that drag force increases with velocity, it enables the opportunity to introduce higher input flow rates and throughput.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TLDX完成签到,获得积分10
1秒前
飒飒发布了新的文献求助10
1秒前
HH发布了新的文献求助30
3秒前
大橙子发布了新的文献求助10
4秒前
5秒前
月月完成签到,获得积分10
5秒前
5秒前
哆啦A梦完成签到,获得积分10
6秒前
了尘完成签到,获得积分10
7秒前
wangnn发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
体贴的叛逆者完成签到,获得积分10
9秒前
幸福的鑫鹏完成签到,获得积分10
9秒前
孤海未蓝完成签到,获得积分10
10秒前
彭于晏应助飒飒采纳,获得10
11秒前
狠毒的小龙虾完成签到,获得积分10
12秒前
小趴菜完成签到,获得积分10
16秒前
lcls完成签到,获得积分10
17秒前
17秒前
18秒前
尊敬太阳发布了新的文献求助10
20秒前
风中夜天完成签到 ,获得积分10
20秒前
优雅友蕊完成签到,获得积分10
21秒前
gaga完成签到,获得积分10
22秒前
西北孤傲的狼完成签到,获得积分10
23秒前
多边形完成签到 ,获得积分10
25秒前
李cc完成签到,获得积分10
27秒前
27秒前
快帮我找找完成签到,获得积分10
27秒前
xiezhuochun完成签到 ,获得积分10
28秒前
31秒前
aixiaoming0503完成签到,获得积分10
32秒前
forge完成签到,获得积分10
32秒前
33秒前
Distance完成签到,获得积分10
36秒前
蒋念寒发布了新的文献求助10
37秒前
雪雨夜心完成签到,获得积分10
41秒前
又是一年完成签到,获得积分10
42秒前
Distance发布了新的文献求助10
43秒前
李子完成签到 ,获得积分10
44秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022