分割
人工神经网络
曲面(拓扑)
计算机科学
人工智能
数学
几何学
作者
Kehan Li,Jihua Zhu,Zhiming Cui,Xinning Chen,Yang Liu,Fan Wang,Yue Zhao
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3404276
摘要
Accurate teeth delineation on 3-D dental models is essential for individualized orthodontic treatment planning. Pioneering works like PointNet suggest a promising direction to conduct efficient and accurate 3-D dental model analyses in end-to-end learnable fashions. Recent studies further imply that multistream architectures to concurrently learn geometric representations from different inputs/views (e.g., coordinates and normals) are beneficial for segmenting teeth with varying conditions. However, such multistream networks typically adopt simple late-fusion strategies to combine features captured from raw inputs that encode complementary but fundamentally different geometric information, potentially hampering their accuracy in end-to-end semantic segmentation. This article presents a hierarchical cross-stream aggregation (HiCA) network to learn more discriminative point/cell-wise representations from multiview inputs for fine-grained 3-D semantic segmentation. Specifically, based upon our multistream backbone with input-tailored feature extractors, we first design a contextual cross-steam aggregation (CA) module conditioned on interstream consistency to boost each view's contextual representation learning jointly. Then, before the late fusion of different streams' outputs for segmentation, we further deploy a discriminative cross-stream aggregation (DA) module to concurrently update all views' discriminative representation learning by leveraging a specific graph attention strategy induced by multiview prototype learning. On both public and in-house datasets of real-patient dental models, our method significantly outperformed state-of-the-art (SOTA) deep learning methods for teeth semantic segmentation. In addition, extended experimental results suggest the applicability of HiCA to other general 3-D shape segmentation tasks. The code is available at https://github.com/ladderlab-xjtu/HiCA.
科研通智能强力驱动
Strongly Powered by AbleSci AI