Predictive analytics of wear performance in high entropy alloy coatings through machine learning

合金 材料科学 高熵合金 分析 预测分析 机器学习 冶金 人工智能 计算机科学 数据科学
作者
S. Sivaraman,N. Radhika
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (7): 076014-076014 被引量:1
标识
DOI:10.1088/1402-4896/ad564c
摘要

Abstract High-entropy alloys (HEAs) are increasingly renowned for their distinct microstructural compositions and exceptional properties. These HEAs are employed for surface modification as coatings exhibit phenomenal mechanical characteristics including wear and corrosion resistance which are extensively utilized in various industrial applications. However, assessing the wear behaviour of the HEA coatings through conventional methods remains challenging and time-consuming due to the complexity of the HEA structures. In this study, a novel methodology has been proposed for predicting the wear behaviour of HEA coatings using Machine Learning (ML) algorithms such as Support Vector Machine (SVM), Linear Regression (LR), Gaussian Process Regression (GPR), Least Absolute Shrinkage and Selection Operator (LASSO), Bagging Regression (BR), Gradient Boosting Regression Tree (GBRT), and Robust regressions (RR). The analysis integrates of 75 combinations of HEA coatings with processing parameters and wear test results from peer-reviewed journals for model training and validation. Among the ML models utilized, the GBRT model was found to be more effective in predicting wear rate and Coefficient of Friction (COF) with the highest correlation coefficient of R 2 value of 0.95 ∼ 0.97 with minimal errors. The optimum model is used to predict the unknown wear properties of HEA coatings from the conducted experiments and validate the results, making ML a crucial resource for engineers in the materials sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jekg应助雪要努力采纳,获得30
刚刚
刚刚
zho发布了新的文献求助20
1秒前
Jasen完成签到,获得积分10
4秒前
小潘完成签到,获得积分10
4秒前
5秒前
6秒前
顾矜应助123lx采纳,获得10
6秒前
脑洞疼应助zhangqin采纳,获得10
7秒前
9秒前
hhhh发布了新的文献求助10
11秒前
ZXR完成签到,获得积分10
13秒前
15秒前
Yolo完成签到 ,获得积分10
16秒前
19秒前
20秒前
21秒前
55555发布了新的文献求助10
22秒前
晓晨完成签到 ,获得积分10
22秒前
24秒前
一只熊发布了新的文献求助10
25秒前
天涯倦客发布了新的文献求助10
26秒前
JamesPei应助55555采纳,获得30
29秒前
30秒前
大模型应助高兴的易形采纳,获得10
34秒前
34秒前
35秒前
倾尽三千完成签到 ,获得积分10
35秒前
35秒前
闫伯涵发布了新的文献求助10
36秒前
cllcx发布了新的文献求助10
40秒前
千寻发布了新的文献求助10
40秒前
ding应助whh123采纳,获得10
41秒前
mike发布了新的文献求助10
42秒前
43秒前
8R60d8应助付逸采纳,获得20
43秒前
YifanWang应助年轻的宛采纳,获得20
44秒前
46秒前
47秒前
47秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240849
求助须知:如何正确求助?哪些是违规求助? 2885549
关于积分的说明 8239074
捐赠科研通 2554008
什么是DOI,文献DOI怎么找? 1382093
科研通“疑难数据库(出版商)”最低求助积分说明 649471
邀请新用户注册赠送积分活动 625097