亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predictive analytics of wear performance in high entropy alloy coatings through machine learning

合金 材料科学 高熵合金 分析 预测分析 机器学习 冶金 人工智能 计算机科学 数据科学
作者
S. Sivaraman,N. Radhika
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (7): 076014-076014 被引量:3
标识
DOI:10.1088/1402-4896/ad564c
摘要

Abstract High-entropy alloys (HEAs) are increasingly renowned for their distinct microstructural compositions and exceptional properties. These HEAs are employed for surface modification as coatings exhibit phenomenal mechanical characteristics including wear and corrosion resistance which are extensively utilized in various industrial applications. However, assessing the wear behaviour of the HEA coatings through conventional methods remains challenging and time-consuming due to the complexity of the HEA structures. In this study, a novel methodology has been proposed for predicting the wear behaviour of HEA coatings using Machine Learning (ML) algorithms such as Support Vector Machine (SVM), Linear Regression (LR), Gaussian Process Regression (GPR), Least Absolute Shrinkage and Selection Operator (LASSO), Bagging Regression (BR), Gradient Boosting Regression Tree (GBRT), and Robust regressions (RR). The analysis integrates of 75 combinations of HEA coatings with processing parameters and wear test results from peer-reviewed journals for model training and validation. Among the ML models utilized, the GBRT model was found to be more effective in predicting wear rate and Coefficient of Friction (COF) with the highest correlation coefficient of R 2 value of 0.95 ∼ 0.97 with minimal errors. The optimum model is used to predict the unknown wear properties of HEA coatings from the conducted experiments and validate the results, making ML a crucial resource for engineers in the materials sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
叶子的叶完成签到,获得积分10
36秒前
36秒前
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
ali发布了新的文献求助10
1分钟前
caca完成签到,获得积分0
2分钟前
2分钟前
百里一江发布了新的文献求助10
2分钟前
andrele发布了新的文献求助30
2分钟前
虚幻雁荷完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
百里一江完成签到 ,获得积分10
3分钟前
3分钟前
SCINEXUS应助lezbj99采纳,获得50
4分钟前
jami-yu发布了新的文献求助30
4分钟前
4分钟前
4分钟前
Ronnie完成签到 ,获得积分10
4分钟前
石石夏发布了新的文献求助10
4分钟前
lezbj99完成签到,获得积分10
4分钟前
拟南芥好壮完成签到,获得积分20
4分钟前
ZDM6094完成签到 ,获得积分10
4分钟前
jami-yu完成签到,获得积分20
4分钟前
Sunny完成签到,获得积分10
4分钟前
花落无声完成签到 ,获得积分10
4分钟前
RFlord发布了新的文献求助10
5分钟前
5分钟前
5分钟前
LeezZZZ发布了新的文献求助10
5分钟前
5分钟前
cds发布了新的文献求助10
5分钟前
在水一方应助cds采纳,获得10
5分钟前
ropuuu完成签到,获得积分10
6分钟前
上官若男应助LeezZZZ采纳,获得10
6分钟前
6分钟前
动听冰淇淋完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568340
求助须知:如何正确求助?哪些是违规求助? 3991003
关于积分的说明 12355277
捐赠科研通 3662958
什么是DOI,文献DOI怎么找? 2018542
邀请新用户注册赠送积分活动 1052981
科研通“疑难数据库(出版商)”最低求助积分说明 940553