Predictive analytics of wear performance in high entropy alloy coatings through machine learning

合金 材料科学 高熵合金 分析 预测分析 机器学习 冶金 人工智能 计算机科学 数据科学
作者
S. Sivaraman,N. Radhika
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (7): 076014-076014 被引量:3
标识
DOI:10.1088/1402-4896/ad564c
摘要

Abstract High-entropy alloys (HEAs) are increasingly renowned for their distinct microstructural compositions and exceptional properties. These HEAs are employed for surface modification as coatings exhibit phenomenal mechanical characteristics including wear and corrosion resistance which are extensively utilized in various industrial applications. However, assessing the wear behaviour of the HEA coatings through conventional methods remains challenging and time-consuming due to the complexity of the HEA structures. In this study, a novel methodology has been proposed for predicting the wear behaviour of HEA coatings using Machine Learning (ML) algorithms such as Support Vector Machine (SVM), Linear Regression (LR), Gaussian Process Regression (GPR), Least Absolute Shrinkage and Selection Operator (LASSO), Bagging Regression (BR), Gradient Boosting Regression Tree (GBRT), and Robust regressions (RR). The analysis integrates of 75 combinations of HEA coatings with processing parameters and wear test results from peer-reviewed journals for model training and validation. Among the ML models utilized, the GBRT model was found to be more effective in predicting wear rate and Coefficient of Friction (COF) with the highest correlation coefficient of R 2 value of 0.95 ∼ 0.97 with minimal errors. The optimum model is used to predict the unknown wear properties of HEA coatings from the conducted experiments and validate the results, making ML a crucial resource for engineers in the materials sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴吴凡发布了新的文献求助10
刚刚
西瓜完成签到,获得积分10
刚刚
科研通AI6应助神明采纳,获得50
1秒前
娇气的幼南完成签到 ,获得积分10
1秒前
Dsivan完成签到,获得积分10
1秒前
2秒前
2秒前
camilia发布了新的文献求助10
3秒前
zhaoxin完成签到 ,获得积分10
3秒前
3秒前
4秒前
浮游应助majf采纳,获得10
4秒前
zhang发布了新的文献求助10
5秒前
ding发布了新的文献求助10
6秒前
重重发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
4000完成签到 ,获得积分10
8秒前
8秒前
wzy完成签到,获得积分20
8秒前
林林林林完成签到,获得积分10
9秒前
共享精神应助burningzmz采纳,获得2000
10秒前
11秒前
11秒前
刘泽民完成签到,获得积分10
11秒前
huan发布了新的文献求助10
11秒前
wangli发布了新的文献求助10
12秒前
标致贞发布了新的文献求助10
12秒前
坦率尔琴发布了新的文献求助10
13秒前
13秒前
13秒前
zhikangzhang完成签到,获得积分10
14秒前
Kashing发布了新的文献求助20
15秒前
小蘑菇应助camilia采纳,获得10
16秒前
星月发布了新的文献求助10
16秒前
huan完成签到,获得积分10
16秒前
潇洒香水完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460985
求助须知:如何正确求助?哪些是违规求助? 4566080
关于积分的说明 14303083
捐赠科研通 4491670
什么是DOI,文献DOI怎么找? 2460439
邀请新用户注册赠送积分活动 1449757
关于科研通互助平台的介绍 1425537