Predictive analytics of wear performance in high entropy alloy coatings through machine learning

合金 材料科学 高熵合金 分析 预测分析 机器学习 冶金 人工智能 计算机科学 数据科学
作者
S. Sivaraman,N. Radhika
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (7): 076014-076014 被引量:3
标识
DOI:10.1088/1402-4896/ad564c
摘要

Abstract High-entropy alloys (HEAs) are increasingly renowned for their distinct microstructural compositions and exceptional properties. These HEAs are employed for surface modification as coatings exhibit phenomenal mechanical characteristics including wear and corrosion resistance which are extensively utilized in various industrial applications. However, assessing the wear behaviour of the HEA coatings through conventional methods remains challenging and time-consuming due to the complexity of the HEA structures. In this study, a novel methodology has been proposed for predicting the wear behaviour of HEA coatings using Machine Learning (ML) algorithms such as Support Vector Machine (SVM), Linear Regression (LR), Gaussian Process Regression (GPR), Least Absolute Shrinkage and Selection Operator (LASSO), Bagging Regression (BR), Gradient Boosting Regression Tree (GBRT), and Robust regressions (RR). The analysis integrates of 75 combinations of HEA coatings with processing parameters and wear test results from peer-reviewed journals for model training and validation. Among the ML models utilized, the GBRT model was found to be more effective in predicting wear rate and Coefficient of Friction (COF) with the highest correlation coefficient of R 2 value of 0.95 ∼ 0.97 with minimal errors. The optimum model is used to predict the unknown wear properties of HEA coatings from the conducted experiments and validate the results, making ML a crucial resource for engineers in the materials sector.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙游天下发布了新的文献求助10
刚刚
刚刚
信徒发布了新的文献求助10
刚刚
清爽泥猴桃完成签到,获得积分10
1秒前
monika完成签到,获得积分10
1秒前
诚心的初露完成签到,获得积分10
1秒前
1秒前
1秒前
星辰大海应助Jojo采纳,获得10
2秒前
2秒前
2秒前
害羞彩虹发布了新的文献求助20
2秒前
忐忑的尔容完成签到,获得积分10
2秒前
2秒前
3秒前
可爱敏敏杨完成签到 ,获得积分10
3秒前
wangeil007发布了新的文献求助10
5秒前
英吉利25发布了新的文献求助10
6秒前
钮小童发布了新的文献求助10
6秒前
6秒前
舒心的银耳汤完成签到,获得积分10
6秒前
6秒前
6秒前
elf发布了新的文献求助10
6秒前
泡面完成签到 ,获得积分10
6秒前
0994发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
一瓶罐发布了新的文献求助10
7秒前
Lucas应助沉默的夜梦采纳,获得10
8秒前
科研通AI6应助luckyseven采纳,获得10
8秒前
8秒前
8秒前
小糊糊完成签到,获得积分20
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
桐桐应助小离采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786