Predictive analytics of wear performance in high entropy alloy coatings through machine learning

合金 材料科学 高熵合金 分析 预测分析 机器学习 冶金 人工智能 计算机科学 数据科学
作者
S. Sivaraman,N. Radhika
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (7): 076014-076014 被引量:3
标识
DOI:10.1088/1402-4896/ad564c
摘要

Abstract High-entropy alloys (HEAs) are increasingly renowned for their distinct microstructural compositions and exceptional properties. These HEAs are employed for surface modification as coatings exhibit phenomenal mechanical characteristics including wear and corrosion resistance which are extensively utilized in various industrial applications. However, assessing the wear behaviour of the HEA coatings through conventional methods remains challenging and time-consuming due to the complexity of the HEA structures. In this study, a novel methodology has been proposed for predicting the wear behaviour of HEA coatings using Machine Learning (ML) algorithms such as Support Vector Machine (SVM), Linear Regression (LR), Gaussian Process Regression (GPR), Least Absolute Shrinkage and Selection Operator (LASSO), Bagging Regression (BR), Gradient Boosting Regression Tree (GBRT), and Robust regressions (RR). The analysis integrates of 75 combinations of HEA coatings with processing parameters and wear test results from peer-reviewed journals for model training and validation. Among the ML models utilized, the GBRT model was found to be more effective in predicting wear rate and Coefficient of Friction (COF) with the highest correlation coefficient of R 2 value of 0.95 ∼ 0.97 with minimal errors. The optimum model is used to predict the unknown wear properties of HEA coatings from the conducted experiments and validate the results, making ML a crucial resource for engineers in the materials sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雷培发布了新的文献求助10
刚刚
迷路芝麻完成签到,获得积分10
1秒前
1秒前
一个爱吃爱睡的团子完成签到,获得积分10
4秒前
隐形曼青应助波波采纳,获得10
4秒前
跳舞的年糕完成签到,获得积分10
5秒前
7秒前
7秒前
wanwan发布了新的文献求助10
8秒前
bkagyin应助善良的冥茗采纳,获得10
8秒前
垚焱完成签到,获得积分10
9秒前
10秒前
11秒前
lijunlhc完成签到,获得积分10
11秒前
11秒前
垚焱发布了新的文献求助10
13秒前
phuocnlh完成签到,获得积分10
13秒前
hjb发布了新的文献求助20
14秒前
步步完成签到 ,获得积分10
16秒前
锦诗完成签到,获得积分10
17秒前
庆qing完成签到,获得积分10
17秒前
zinc发布了新的文献求助10
18秒前
先吃一只羊完成签到 ,获得积分10
22秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
田様应助科研通管家采纳,获得10
25秒前
华仔应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
赘婿应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
26秒前
在水一方应助勤恳的凝蕊采纳,获得10
27秒前
Clxzzgzg完成签到,获得积分10
27秒前
28秒前
善学以致用应助七个丸子采纳,获得30
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997562
求助须知:如何正确求助?哪些是违规求助? 3537094
关于积分的说明 11270816
捐赠科研通 3276315
什么是DOI,文献DOI怎么找? 1806876
邀请新用户注册赠送积分活动 883554
科研通“疑难数据库(出版商)”最低求助积分说明 809975