Predictive analytics of wear performance in high entropy alloy coatings through machine learning

合金 材料科学 高熵合金 分析 预测分析 机器学习 冶金 人工智能 计算机科学 数据科学
作者
S. Sivaraman,N. Radhika
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (7): 076014-076014 被引量:3
标识
DOI:10.1088/1402-4896/ad564c
摘要

Abstract High-entropy alloys (HEAs) are increasingly renowned for their distinct microstructural compositions and exceptional properties. These HEAs are employed for surface modification as coatings exhibit phenomenal mechanical characteristics including wear and corrosion resistance which are extensively utilized in various industrial applications. However, assessing the wear behaviour of the HEA coatings through conventional methods remains challenging and time-consuming due to the complexity of the HEA structures. In this study, a novel methodology has been proposed for predicting the wear behaviour of HEA coatings using Machine Learning (ML) algorithms such as Support Vector Machine (SVM), Linear Regression (LR), Gaussian Process Regression (GPR), Least Absolute Shrinkage and Selection Operator (LASSO), Bagging Regression (BR), Gradient Boosting Regression Tree (GBRT), and Robust regressions (RR). The analysis integrates of 75 combinations of HEA coatings with processing parameters and wear test results from peer-reviewed journals for model training and validation. Among the ML models utilized, the GBRT model was found to be more effective in predicting wear rate and Coefficient of Friction (COF) with the highest correlation coefficient of R 2 value of 0.95 ∼ 0.97 with minimal errors. The optimum model is used to predict the unknown wear properties of HEA coatings from the conducted experiments and validate the results, making ML a crucial resource for engineers in the materials sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
砰砰彭发布了新的文献求助20
1秒前
爆米花应助王多肉采纳,获得10
2秒前
山南驳回了打打应助
4秒前
Chaos完成签到,获得积分10
4秒前
4秒前
遇上就这样吧应助kento采纳,获得50
5秒前
6秒前
6秒前
7秒前
8秒前
梨花月应助司空元正采纳,获得10
8秒前
9秒前
学fei了吗完成签到,获得积分10
9秒前
11完成签到,获得积分10
11秒前
11秒前
浮游应助咿呀呀采纳,获得10
11秒前
孙勇发发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
天天快乐应助神秘人采纳,获得10
16秒前
17秒前
友好德天完成签到 ,获得积分10
19秒前
浮游应助风中的身影采纳,获得10
20秒前
20秒前
真水无香完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
怕孤独的忆南完成签到,获得积分10
24秒前
Melody发布了新的文献求助10
25秒前
25秒前
26秒前
浮游应助lllll采纳,获得10
26秒前
27秒前
情怀应助小冯采纳,获得10
27秒前
28秒前
28秒前
科研通AI6应助Seven采纳,获得20
28秒前
28秒前
xc完成签到,获得积分10
29秒前
29秒前
王瑶完成签到,获得积分20
30秒前
科研通AI5应助dqw采纳,获得10
30秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5135008
求助须知:如何正确求助?哪些是违规求助? 4335582
关于积分的说明 13507290
捐赠科研通 4173211
什么是DOI,文献DOI怎么找? 2288286
邀请新用户注册赠送积分活动 1289005
关于科研通互助平台的介绍 1230049