材料科学
氮化硼
热导率
石墨烯
工程物理
电子设备和系统的热管理
纳米技术
接口(物质)
机械工程
复合材料
工程类
毛细管数
毛细管作用
作者
Wen Dai,Li Wang,Maohua Li,Lu Chen,Qingwei Yan,Jinhong Yu,Nan Jiang,Cheng‐Te Lin
标识
DOI:10.1002/adma.202311335
摘要
Abstract The challenges associated with heat dissipation in high‐power electronic devices used in communication, new energy, and aerospace equipment have spurred an urgent need for high‐performance thermal interface materials (TIMs) to establish efficient heat transfer pathways from the heater (chip) to heat sinks. Recently, emerging 2D materials, such as graphene and boron nitride, renowned for their ultrahigh basal‐plane thermal conductivity and the capacity to facilitate cross‐scale, multi‐morphic structural design, have found widespread use as thermal fillers in the production of high‐performance TIMs. To deepen the understanding of 2D material‐based TIMs, this review focuses primarily on graphene and boron nitride‐based TIMs, exploring their structures, properties, and applications. Building on this foundation, the developmental history of these TIMs is emphasized and a detailed analysis of critical challenges and potential solutions is provided. Additionally, the preparation and application of some other novel 2D materials‐based TIMs are briefly introduced, aiming to offer constructive guidance for the future development of high‐performance TIMs.
科研通智能强力驱动
Strongly Powered by AbleSci AI