高光谱成像
水准点(测量)
结果(博弈论)
遥感
计算机科学
人工智能
环境科学
数学
地质学
地理
地图学
数理经济学
作者
Jakub Nalepa,Łukasz Tulczyjew,Bertrand Le Saux,Nicolas Longépé,Bogdan Ruszczak,Agata M. Wijata,Krzysztof Smykała,Michał Myller,Michał Kawulok,Rıdvan Salih Kuzu,Frauke Albrecht,Caroline Arnold,Mohammad Hussein Alasawedah,Suzanne Angeli,D. Nobileau,Achille Ballabeni,Alessandro Lotti,Alfredo Locarini,Dario Modenini,Paolo Tortora,Michał Gumiela
出处
期刊:IEEE Geoscience and Remote Sensing Magazine
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 2-30
标识
DOI:10.1109/mgrs.2024.3394040
摘要
Enhancing agricultural methods through the utilization of Earth observation and artificial intelligence (AI) has emerged as a significant concern. The ability to quantify soil parameters on a large scale can play a pivotal role in optimizing the fertilization process. While techniques for noninvasive estimation of soil parameters from hyperspectral images (HSIs) exist, their validation typically occurs across different datasets and employs varying validation protocols. This diversity renders them inherently challenging (or even impossible) to compare objectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI