亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tab-Cox: An Interpretable Deep Survival Analysis Model for Patients With Nasopharyngeal Carcinoma Based on TabNet

可解释性 鼻咽癌 机器学习 比例危险模型 医学诊断 人工神经网络 医学 生存分析 人工智能 计算机科学 数据挖掘 内科学 放射治疗 病理
作者
Huamei Qi,Yuxuan Hu,Ruohao Fan,Lei Deng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4937-4950 被引量:1
标识
DOI:10.1109/jbhi.2024.3397955
摘要

The nutritional status of cancer patients is closely associated with the clinical progression of the disease. A survival analysis model combined with a neural network can predict future disease trends in patients, facilitating early prevention and assisting physicians in making diagnoses. However, the complexity of neural networks and their incompatibility with medical tabular data can reduce the interpretability of the model. To address this issue, thr paper propose a novel survival analysis model called Tab-Cox, which combines TabNet and Cox models. This model is specifically designed to predict the survival outcomes of patients with nasopharyngeal carcinoma. The model utilizes TabNet's sequential attention mechanism to extract more interpretable features, providing an interpretable method for identifying disease risk factors. Consequently, the model ensures accurate survival prediction while also making the results more comprehensible for both patients and doctors. The paper tested the efficacy of the model by conducting experiments on various diverse datasets in comparison with other commonly used survival models. The results showed that the proposed model delivered the highest or second-highest accuracy across all datasets. Furthermore, the paper conducted a comparative interpretability analysis against the classical Cox model. In addition and compare the interpretability of the Tab-Cox model with the classical Cox model and discuss the advantages and disadvantages of its interpretability. This demonstrates that Tab-Cox can assist doctors in identifying risk factors that are challenging to capture using artificial methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SCI完成签到 ,获得积分10
34秒前
乐乐应助科研圈外人采纳,获得10
55秒前
开心的瘦子完成签到,获得积分10
56秒前
CipherSage应助cc采纳,获得10
1分钟前
1分钟前
1分钟前
cc完成签到,获得积分10
1分钟前
1分钟前
芒果布丁完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
享受不良诱惑完成签到,获得积分10
2分钟前
丫丫完成签到 ,获得积分10
2分钟前
2分钟前
Tiamo完成签到,获得积分10
2分钟前
yzsh完成签到,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
FFFF发布了新的文献求助20
3分钟前
3分钟前
Anna完成签到 ,获得积分10
3分钟前
FFFF完成签到,获得积分10
3分钟前
Tiamo发布了新的文献求助10
3分钟前
3分钟前
3分钟前
4分钟前
有趣的银发布了新的文献求助10
4分钟前
落叶捎来讯息完成签到 ,获得积分10
4分钟前
4分钟前
搜集达人应助阿塔塔采纳,获得10
4分钟前
小田发布了新的文献求助10
4分钟前
阿塔塔完成签到,获得积分10
4分钟前
有趣的银发布了新的文献求助10
4分钟前
4分钟前
阿塔塔发布了新的文献求助10
4分钟前
4分钟前
hyc发布了新的文献求助10
4分钟前
科研通AI6应助aa采纳,获得10
4分钟前
慕青应助学术蜗牛采纳,获得10
4分钟前
研友_VZG7GZ应助hyc采纳,获得10
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232636
求助须知:如何正确求助?哪些是违规求助? 4401913
关于积分的说明 13699440
捐赠科研通 4268297
什么是DOI,文献DOI怎么找? 2342513
邀请新用户注册赠送积分活动 1339514
关于科研通互助平台的介绍 1296180