Tab-Cox: An Interpretable Deep Survival Analysis Model for Patients With Nasopharyngeal Carcinoma Based on TabNet

可解释性 鼻咽癌 机器学习 比例危险模型 医学诊断 人工神经网络 医学 生存分析 人工智能 计算机科学 数据挖掘 内科学 放射治疗 病理
作者
Huamei Qi,Yuxuan Hu,Ruohao Fan,Lei Deng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4937-4950 被引量:1
标识
DOI:10.1109/jbhi.2024.3397955
摘要

The nutritional status of cancer patients is closely associated with the clinical progression of the disease. A survival analysis model combined with a neural network can predict future disease trends in patients, facilitating early prevention and assisting physicians in making diagnoses. However, the complexity of neural networks and their incompatibility with medical tabular data can reduce the interpretability of the model. To address this issue, thr paper propose a novel survival analysis model called Tab-Cox, which combines TabNet and Cox models. This model is specifically designed to predict the survival outcomes of patients with nasopharyngeal carcinoma. The model utilizes TabNet's sequential attention mechanism to extract more interpretable features, providing an interpretable method for identifying disease risk factors. Consequently, the model ensures accurate survival prediction while also making the results more comprehensible for both patients and doctors. The paper tested the efficacy of the model by conducting experiments on various diverse datasets in comparison with other commonly used survival models. The results showed that the proposed model delivered the highest or second-highest accuracy across all datasets. Furthermore, the paper conducted a comparative interpretability analysis against the classical Cox model. In addition and compare the interpretability of the Tab-Cox model with the classical Cox model and discuss the advantages and disadvantages of its interpretability. This demonstrates that Tab-Cox can assist doctors in identifying risk factors that are challenging to capture using artificial methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
666完成签到 ,获得积分10
2秒前
cavendipeng完成签到,获得积分10
3秒前
4秒前
大吴克发布了新的文献求助10
5秒前
5秒前
tian发布了新的文献求助10
6秒前
Sherry发布了新的文献求助10
6秒前
7秒前
ccyy完成签到 ,获得积分10
8秒前
8秒前
木木完成签到,获得积分10
9秒前
英俊的铭应助sss采纳,获得10
9秒前
伯赏泽洋完成签到,获得积分10
9秒前
KKKK完成签到,获得积分10
10秒前
by完成签到,获得积分10
10秒前
Zoe完成签到,获得积分10
10秒前
10秒前
jianglan完成签到,获得积分10
11秒前
11秒前
耍酷的翠曼完成签到,获得积分10
11秒前
查理fofo完成签到,获得积分10
12秒前
洁净的天德完成签到,获得积分10
12秒前
Snowy完成签到,获得积分10
13秒前
Legend_完成签到 ,获得积分10
13秒前
Cheshire完成签到,获得积分10
14秒前
冷静的奇迹完成签到,获得积分10
14秒前
lun完成签到,获得积分10
14秒前
xiaofu完成签到,获得积分10
16秒前
无心的闭月完成签到,获得积分10
17秒前
小次之山完成签到,获得积分10
17秒前
简单的冬瓜完成签到,获得积分10
17秒前
moxin发布了新的文献求助50
17秒前
阿胡发布了新的文献求助30
17秒前
Jnest完成签到,获得积分10
18秒前
思源应助zhoull采纳,获得10
18秒前
小王同学完成签到 ,获得积分10
19秒前
房东家的猫完成签到,获得积分10
20秒前
yyyy完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499037
关于积分的说明 11093764
捐赠科研通 3229662
什么是DOI,文献DOI怎么找? 1785694
邀请新用户注册赠送积分活动 869467
科研通“疑难数据库(出版商)”最低求助积分说明 801470