An automated framework for human emotion detection from multichannel EEG signals

脑电图 计算机科学 情绪检测 探测理论 人工智能 语音识别 模式识别(心理学) 情绪识别 心理学 探测器 神经科学 电信
作者
Aditya Nalwaya,Kritiprasanna Das,Ram Bilas Pachori
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (13): 20920-20927
标识
DOI:10.1109/jsen.2024.3398050
摘要

This paper presents an electroencephalogram (EEG) rhythm-based novel approach for emotion recognition. Recognizing multiple classes of emotion has been a challenging task, and several attempts have been made earlier to recognize emotion. The proposed work presents a simplistic and efficient framework for emotion recognition. Instead of using different methods for signal quality enhancement and signal component extraction, the current study focuses on a single advanced signal processing method which addresses the above mentioned issue. A joint time-frequency domain-based feature is proposed. The proposed joint features help in estimating the effect of emotion elicitation over the time-frequency distribution of each rhythm calculated across all the channels. Additionally, channel-wise separated EEG rhythm features are extracted, and these features are used to determine the emotional state using a machine learning model. In EEG, several oscillatory rhythms exist which reflect the brain's neural activity. The current study assesses changes in EEG rhythms due to audiovisual elicitation. Four classes of emotion, namely happy, sad, fear, and neutral, are studied in this paper. The subject-wise mean accuracy obtained is 95.91%. The proposed framework uses a multivariate variational mode decomposition method to separate the raw signal into various EEG rhythms. Also, it has been found that higher-frequency rhythms have more information related to emotion than the lower-frequency rhythms. A simplistic approach with good accuracy makes the proposed methodology significant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lee完成签到,获得积分10
1秒前
1秒前
2秒前
嗯嗯发布了新的文献求助30
2秒前
zy关注了科研通微信公众号
2秒前
在水一方应助tulips采纳,获得10
2秒前
3秒前
刘冬良发布了新的文献求助10
5秒前
vikoel发布了新的文献求助10
6秒前
6秒前
乐乐应助太白采纳,获得10
6秒前
6秒前
whilson发布了新的文献求助10
7秒前
上官若男应助yanzinie采纳,获得10
7秒前
丘比特应助孤独树叶采纳,获得10
7秒前
pfangjin完成签到 ,获得积分10
8秒前
研友_LOoomL发布了新的文献求助10
9秒前
9秒前
9秒前
Hello应助殷勤的凡白采纳,获得10
10秒前
11秒前
12秒前
course发布了新的文献求助10
12秒前
14秒前
15秒前
一棵草发布了新的文献求助10
15秒前
15秒前
马海发布了新的文献求助30
16秒前
yoonkk完成签到,获得积分10
16秒前
天人完成签到,获得积分10
17秒前
盘小古发布了新的文献求助10
18秒前
饭饭发布了新的文献求助30
19秒前
长街完成签到,获得积分20
19秒前
20秒前
21秒前
tsw完成签到,获得积分10
21秒前
23秒前
23秒前
zy发布了新的文献求助10
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228477
求助须知:如何正确求助?哪些是违规求助? 2876197
关于积分的说明 8194322
捐赠科研通 2543356
什么是DOI,文献DOI怎么找? 1373691
科研通“疑难数据库(出版商)”最低求助积分说明 646816
邀请新用户注册赠送积分活动 621402