A neural-network potential for aluminum

层错能 工作(物理) 叠加断层 材料科学 变形(气象学) 熔点 堆积 相图 人工神经网络 统计物理学 热力学 计算机科学 相(物质) 人工智能 位错 化学 物理 微观结构 冶金 有机化学 复合材料
作者
Ruslan Akhmerov,Irina Piyanzina,Oleg V. Nedopekin,Volker Eyert
出处
期刊:Computational Materials Science [Elsevier]
卷期号:244: 113159-113159 被引量:2
标识
DOI:10.1016/j.commatsci.2024.113159
摘要

Aluminum and its alloys are most often used as structural materials due to their specific properties, such as low weight, low energy consumption for remelting and the possibility of almost complete processing. This paper utilizes machine learning, specifically the Behler-Parrinello neural network scheme, to develop a powerful potential for studying the underlying mechanisms of deformation, fracture, and defect formation. By surpassing the limitations of first principles calculations, the application of machine-learned potentials (MLP) becomes highly advantageous for describing pure aluminum (Al) in its solid and liquid phases. Specifically, from the generated potential equilibrium, thermodynamic, elastic, and vibrational properties of face-centered cubic (fcc) Al are obtained in very good agreement especially with density functional theory (DFT) results as well as with previous calculations using existing semi-empirical potentials, such as EAM and MEAM, recent machine-learned potentials, and experimental data. Furthermore, our potential proves to accurately reproduce defect formation energies such as previously computed and measured stacking-fault energy curves. Finally, stacking fault profiles as well as key quantities of the liquid phase such as the melting point at ambient pressure, temperature-dependent densities, and radial distribution functions are also calculated in very good agreement with the results from previous theoretical and experimental investigations. Nevertheless, our investigation goes beyond previous studies in proving excellent agreement with experimental data especially of the specific heat and the melting point at very high pressures. The competitive analysis performed in this work thus clearly demonstrates the validity and accuracy of the generated machine-learned potential to describe a wide range of properties of Al at various temperatures and pressures and thereby lays ground for future applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助小鱼采纳,获得10
刚刚
miqiqi完成签到,获得积分10
2秒前
Jero发布了新的文献求助10
2秒前
3秒前
anna521212发布了新的文献求助20
3秒前
sss发布了新的文献求助30
3秒前
4秒前
瑾瑜玉完成签到 ,获得积分10
5秒前
zizi完成签到 ,获得积分10
6秒前
987654发布了新的文献求助10
6秒前
周周发布了新的文献求助10
7秒前
10秒前
慕青应助野子采纳,获得10
10秒前
10秒前
Jero完成签到,获得积分10
11秒前
987654完成签到,获得积分10
11秒前
13秒前
小鱼完成签到,获得积分10
16秒前
mljever发布了新的文献求助10
16秒前
17秒前
18秒前
yuyuyyy发布了新的文献求助10
20秒前
旋律依然发布了新的文献求助30
20秒前
21秒前
勤劳nannan完成签到,获得积分10
22秒前
握月担风发布了新的文献求助10
23秒前
anna521212完成签到,获得积分10
24秒前
25秒前
小鱼发布了新的文献求助10
27秒前
无情洋葱应助森先生采纳,获得30
28秒前
29秒前
aaa发布了新的文献求助10
29秒前
Jeric发布了新的文献求助10
31秒前
Wu完成签到,获得积分20
33秒前
星辰大海应助明钟达采纳,获得10
35秒前
猪猪hero应助小狗采纳,获得10
35秒前
yuyuyyy完成签到,获得积分10
37秒前
lemon完成签到 ,获得积分10
37秒前
在水一方应助小狗采纳,获得10
39秒前
Hehhhh发布了新的文献求助50
39秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Injection and Compression Molding Fundamentals 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3421658
求助须知:如何正确求助?哪些是违规求助? 3022251
关于积分的说明 8899954
捐赠科研通 2709532
什么是DOI,文献DOI怎么找? 1485933
科研通“疑难数据库(出版商)”最低求助积分说明 686903
邀请新用户注册赠送积分活动 682035