Research on efficient classification algorithm for coal and gangue based on improved MobilenetV3-small

煤矸石 算法 计算机科学 模式识别(心理学) 人工智能 采矿工程 数学 地质学 工程类 废物管理 材料科学 冶金
作者
Zhenguan Cao,Jinbiao Li,Liao Fang,Zhuoqin Li,Haixia Yang,Gaohui Dong
出处
期刊:International Journal of Coal Preparation and Utilization [Taylor & Francis]
卷期号:: 1-26 被引量:1
标识
DOI:10.1080/19392699.2024.2353128
摘要

Aiming at the problems of insufficient attention to spatial information, long classification training time, and high model complexity in current gangue image classification algorithms, a lightweight fast recognition model for gangue based on improved MobileNetV3-small is proposed. First, we optimize the feature extraction part by introducing the CeLU activation function to alleviate the neuron death and gradient vanishing problems, thus improving the performance of the model. Second, Bneck is further optimized using an improved Triplet Attention Module to achieve almost parameter-free spatial and channel dimension interactions, which drastically reduces the complexity of the model. Finally, we construct a new Efficient Last Stage structure, which improves the model performance while successfully reducing the computation and model size by replacing the traditional convolution with Ghost Module and introducing Mix-pool as a pooling layer. In addition, the effectiveness of each component was fully demonstrated through ablation experiments, visualization analysis, and comparative experiments. The experimental results show that training the homemade gangue dataset using the improved MobilenetV3-small model improves Accuracy and F1-Score on the validation set by 0.48% and 0.42%, respectively, compared to the original network, and in terms of model complexity, we can see that FLOPs, number of parameters, and Weight size are reduced by 2.8%, 33.0%, and 32.3%, respectively, and FPS reaches 28 frames per second. The improved algorithm greatly reduces the model complexity and decreases the dependence on hardware devices while improving the classification accuracy and anti-interference capability. This provides an important reference basis for deploying automated underground coal gangue sorting, which helps to realize intelligent integrated mining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jackie完成签到,获得积分10
1秒前
123456发布了新的文献求助10
1秒前
ding应助风中的宛白采纳,获得10
1秒前
乐总完成签到,获得积分10
1秒前
故意的访云完成签到,获得积分10
1秒前
17466y完成签到,获得积分10
1秒前
科研通AI5应助ww采纳,获得10
2秒前
科目三应助Maggie_403采纳,获得10
2秒前
2秒前
我要发NATURE完成签到,获得积分10
3秒前
科研通AI6应助妖姬采纳,获得10
3秒前
3秒前
zzzz发布了新的文献求助10
4秒前
火星上夏波完成签到,获得积分10
4秒前
4秒前
4秒前
Daurzr发布了新的文献求助10
4秒前
风中的青完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
852应助cyd采纳,获得10
6秒前
6秒前
七腿儿猫完成签到,获得积分10
6秒前
卢曹宇完成签到,获得积分10
6秒前
小马甲应助xinxin采纳,获得10
7秒前
Min应助猪猪侠采纳,获得10
7秒前
知性的以筠完成签到 ,获得积分10
8秒前
8秒前
xwb发布了新的文献求助10
8秒前
Chaiyuan完成签到 ,获得积分10
9秒前
进击的研狗完成签到 ,获得积分10
9秒前
迟暮完成签到 ,获得积分10
10秒前
科研通AI6应助lbw采纳,获得10
11秒前
科研开门发布了新的文献求助10
11秒前
多和5的武器完成签到,获得积分10
11秒前
研友_ZAe4qZ完成签到,获得积分20
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615619
求助须知:如何正确求助?哪些是违规求助? 4019269
关于积分的说明 12441658
捐赠科研通 3702297
什么是DOI,文献DOI怎么找? 2041522
邀请新用户注册赠送积分活动 1074192
科研通“疑难数据库(出版商)”最低求助积分说明 957826