Research on efficient classification algorithm for coal and gangue based on improved MobilenetV3-small

煤矸石 算法 计算机科学 模式识别(心理学) 人工智能 采矿工程 数学 地质学 工程类 废物管理 材料科学 冶金
作者
Zhenguan Cao,Jinbiao Li,Liao Fang,Zhuoqin Li,Haixia Yang,Gaohui Dong
出处
期刊:International Journal of Coal Preparation and Utilization [Informa]
卷期号:: 1-26 被引量:1
标识
DOI:10.1080/19392699.2024.2353128
摘要

Aiming at the problems of insufficient attention to spatial information, long classification training time, and high model complexity in current gangue image classification algorithms, a lightweight fast recognition model for gangue based on improved MobileNetV3-small is proposed. First, we optimize the feature extraction part by introducing the CeLU activation function to alleviate the neuron death and gradient vanishing problems, thus improving the performance of the model. Second, Bneck is further optimized using an improved Triplet Attention Module to achieve almost parameter-free spatial and channel dimension interactions, which drastically reduces the complexity of the model. Finally, we construct a new Efficient Last Stage structure, which improves the model performance while successfully reducing the computation and model size by replacing the traditional convolution with Ghost Module and introducing Mix-pool as a pooling layer. In addition, the effectiveness of each component was fully demonstrated through ablation experiments, visualization analysis, and comparative experiments. The experimental results show that training the homemade gangue dataset using the improved MobilenetV3-small model improves Accuracy and F1-Score on the validation set by 0.48% and 0.42%, respectively, compared to the original network, and in terms of model complexity, we can see that FLOPs, number of parameters, and Weight size are reduced by 2.8%, 33.0%, and 32.3%, respectively, and FPS reaches 28 frames per second. The improved algorithm greatly reduces the model complexity and decreases the dependence on hardware devices while improving the classification accuracy and anti-interference capability. This provides an important reference basis for deploying automated underground coal gangue sorting, which helps to realize intelligent integrated mining.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyt发布了新的文献求助10
刚刚
刚刚
hcy完成签到,获得积分10
1秒前
aqiuyuehe发布了新的文献求助20
1秒前
bkagyin应助tt采纳,获得10
1秒前
2秒前
2秒前
3秒前
潇洒的梦安完成签到,获得积分10
3秒前
小鱼发布了新的文献求助10
4秒前
搜集达人应助危机的一斩采纳,获得10
4秒前
有魅力听白完成签到,获得积分10
4秒前
上官若男应助ZZH采纳,获得10
4秒前
zm可乐妹发布了新的文献求助10
5秒前
5秒前
Jasper应助阿刘不想学了采纳,获得10
7秒前
7秒前
顾年完成签到,获得积分10
8秒前
8秒前
醉爱星星完成签到 ,获得积分10
8秒前
10秒前
hehehe完成签到,获得积分10
11秒前
MrsGrape完成签到,获得积分10
12秒前
sagacity发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
qazplm发布了新的文献求助10
13秒前
13秒前
13秒前
西瓜投手完成签到,获得积分10
14秒前
沈世尧完成签到,获得积分10
15秒前
火星上的小笼包完成签到,获得积分10
15秒前
Yan发布了新的文献求助10
16秒前
16秒前
秋天的雪完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735307
求助须知:如何正确求助?哪些是违规求助? 5359844
关于积分的说明 15329214
捐赠科研通 4879525
什么是DOI,文献DOI怎么找? 2622047
邀请新用户注册赠送积分活动 1571209
关于科研通互助平台的介绍 1528039