Research on efficient classification algorithm for coal and gangue based on improved MobilenetV3-small

煤矸石 算法 计算机科学 模式识别(心理学) 人工智能 采矿工程 数学 地质学 工程类 废物管理 材料科学 冶金
作者
Zhenguan Cao,Jinbiao Li,Liao Fang,Zhuoqin Li,Haixia Yang,Gaohui Dong
出处
期刊:International Journal of Coal Preparation and Utilization [Taylor & Francis]
卷期号:: 1-26 被引量:1
标识
DOI:10.1080/19392699.2024.2353128
摘要

Aiming at the problems of insufficient attention to spatial information, long classification training time, and high model complexity in current gangue image classification algorithms, a lightweight fast recognition model for gangue based on improved MobileNetV3-small is proposed. First, we optimize the feature extraction part by introducing the CeLU activation function to alleviate the neuron death and gradient vanishing problems, thus improving the performance of the model. Second, Bneck is further optimized using an improved Triplet Attention Module to achieve almost parameter-free spatial and channel dimension interactions, which drastically reduces the complexity of the model. Finally, we construct a new Efficient Last Stage structure, which improves the model performance while successfully reducing the computation and model size by replacing the traditional convolution with Ghost Module and introducing Mix-pool as a pooling layer. In addition, the effectiveness of each component was fully demonstrated through ablation experiments, visualization analysis, and comparative experiments. The experimental results show that training the homemade gangue dataset using the improved MobilenetV3-small model improves Accuracy and F1-Score on the validation set by 0.48% and 0.42%, respectively, compared to the original network, and in terms of model complexity, we can see that FLOPs, number of parameters, and Weight size are reduced by 2.8%, 33.0%, and 32.3%, respectively, and FPS reaches 28 frames per second. The improved algorithm greatly reduces the model complexity and decreases the dependence on hardware devices while improving the classification accuracy and anti-interference capability. This provides an important reference basis for deploying automated underground coal gangue sorting, which helps to realize intelligent integrated mining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛牛牛应助Ldq采纳,获得10
1秒前
1秒前
2秒前
我先睡了发布了新的文献求助10
2秒前
在水一方应助wmufwd采纳,获得10
2秒前
2秒前
Lumos发布了新的文献求助10
2秒前
花傲天的小狗完成签到,获得积分10
3秒前
NewAlex完成签到,获得积分10
3秒前
3秒前
Jasper应助黄超采纳,获得10
4秒前
独特思卉关注了科研通微信公众号
4秒前
5秒前
6秒前
cc发布了新的文献求助10
6秒前
wind发布了新的文献求助10
7秒前
田様应助晨晨采纳,获得10
7秒前
Zkxxxx应助我先睡了采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
张羊羔完成签到,获得积分10
8秒前
8秒前
千寻完成签到,获得积分10
9秒前
舒适的淇发布了新的文献求助10
10秒前
10秒前
今后应助小油条采纳,获得10
10秒前
传奇3应助蛋挞好好吃采纳,获得10
11秒前
张羊羔发布了新的文献求助10
11秒前
hhh发布了新的文献求助10
11秒前
11秒前
hujingdi发布了新的文献求助50
12秒前
13秒前
哈哈完成签到,获得积分10
14秒前
牛牛牛应助Zzjinyu采纳,获得10
14秒前
充电宝应助lan采纳,获得10
14秒前
2947063576发布了新的文献求助10
15秒前
可爱的函函应助王大可采纳,获得10
15秒前
Rondab应助元谷雪采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958814
求助须知:如何正确求助?哪些是违规求助? 3505069
关于积分的说明 11121961
捐赠科研通 3236515
什么是DOI,文献DOI怎么找? 1788844
邀请新用户注册赠送积分活动 871413
科研通“疑难数据库(出版商)”最低求助积分说明 802742