Research on efficient classification algorithm for coal and gangue based on improved MobilenetV3-small

煤矸石 算法 计算机科学 模式识别(心理学) 人工智能 采矿工程 数学 地质学 工程类 废物管理 材料科学 冶金
作者
Zhenguan Cao,Jinbiao Li,Liao Fang,Zhuoqin Li,Haixia Yang,Gaohui Dong
出处
期刊:International Journal of Coal Preparation and Utilization [Taylor & Francis]
卷期号:: 1-26 被引量:1
标识
DOI:10.1080/19392699.2024.2353128
摘要

Aiming at the problems of insufficient attention to spatial information, long classification training time, and high model complexity in current gangue image classification algorithms, a lightweight fast recognition model for gangue based on improved MobileNetV3-small is proposed. First, we optimize the feature extraction part by introducing the CeLU activation function to alleviate the neuron death and gradient vanishing problems, thus improving the performance of the model. Second, Bneck is further optimized using an improved Triplet Attention Module to achieve almost parameter-free spatial and channel dimension interactions, which drastically reduces the complexity of the model. Finally, we construct a new Efficient Last Stage structure, which improves the model performance while successfully reducing the computation and model size by replacing the traditional convolution with Ghost Module and introducing Mix-pool as a pooling layer. In addition, the effectiveness of each component was fully demonstrated through ablation experiments, visualization analysis, and comparative experiments. The experimental results show that training the homemade gangue dataset using the improved MobilenetV3-small model improves Accuracy and F1-Score on the validation set by 0.48% and 0.42%, respectively, compared to the original network, and in terms of model complexity, we can see that FLOPs, number of parameters, and Weight size are reduced by 2.8%, 33.0%, and 32.3%, respectively, and FPS reaches 28 frames per second. The improved algorithm greatly reduces the model complexity and decreases the dependence on hardware devices while improving the classification accuracy and anti-interference capability. This provides an important reference basis for deploying automated underground coal gangue sorting, which helps to realize intelligent integrated mining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sunyuice发布了新的文献求助10
刚刚
亦雪发布了新的文献求助10
刚刚
欢呼山雁完成签到,获得积分10
刚刚
刚刚
青春梦完成签到,获得积分10
刚刚
wrf77_完成签到,获得积分10
1秒前
BowieHuang应助任性的小丸子采纳,获得10
1秒前
2秒前
米饭多加水完成签到 ,获得积分10
2秒前
勤劳的水之完成签到,获得积分10
2秒前
2秒前
小马甲应助Yuan88采纳,获得10
2秒前
西西弗斯完成签到,获得积分0
3秒前
倒霉蛋完成签到,获得积分20
3秒前
宋佳珍发布了新的文献求助10
3秒前
3秒前
传奇3应助Nano采纳,获得10
4秒前
SppikeFPS完成签到,获得积分10
4秒前
打打应助45采纳,获得10
4秒前
4秒前
4秒前
5秒前
科研通AI6应助阿龙采纳,获得10
6秒前
6秒前
迷路的以蓝完成签到,获得积分20
6秒前
傲娇诗完成签到,获得积分10
6秒前
心灵美盼烟完成签到,获得积分10
6秒前
晚来风与雪完成签到 ,获得积分10
7秒前
科研通AI6应助cuizhiyu采纳,获得30
7秒前
xxx发布了新的文献求助10
7秒前
xzh发布了新的文献求助10
7秒前
Li应助倒霉蛋采纳,获得30
8秒前
江子完成签到 ,获得积分10
8秒前
8秒前
8秒前
繁星背后发布了新的文献求助10
8秒前
Ava应助浪费采纳,获得10
9秒前
9秒前
努力发芽的小黄豆完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260162
求助须知:如何正确求助?哪些是违规求助? 4421632
关于积分的说明 13763676
捐赠科研通 4295814
什么是DOI,文献DOI怎么找? 2357032
邀请新用户注册赠送积分活动 1353405
关于科研通互助平台的介绍 1314609