已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on efficient classification algorithm for coal and gangue based on improved MobilenetV3-small

煤矸石 算法 计算机科学 模式识别(心理学) 人工智能 采矿工程 数学 地质学 工程类 废物管理 材料科学 冶金
作者
Zhenguan Cao,Jinbiao Li,Liao Fang,Zhuoqin Li,Haixia Yang,Gaohui Dong
出处
期刊:International Journal of Coal Preparation and Utilization [Informa]
卷期号:: 1-26 被引量:1
标识
DOI:10.1080/19392699.2024.2353128
摘要

Aiming at the problems of insufficient attention to spatial information, long classification training time, and high model complexity in current gangue image classification algorithms, a lightweight fast recognition model for gangue based on improved MobileNetV3-small is proposed. First, we optimize the feature extraction part by introducing the CeLU activation function to alleviate the neuron death and gradient vanishing problems, thus improving the performance of the model. Second, Bneck is further optimized using an improved Triplet Attention Module to achieve almost parameter-free spatial and channel dimension interactions, which drastically reduces the complexity of the model. Finally, we construct a new Efficient Last Stage structure, which improves the model performance while successfully reducing the computation and model size by replacing the traditional convolution with Ghost Module and introducing Mix-pool as a pooling layer. In addition, the effectiveness of each component was fully demonstrated through ablation experiments, visualization analysis, and comparative experiments. The experimental results show that training the homemade gangue dataset using the improved MobilenetV3-small model improves Accuracy and F1-Score on the validation set by 0.48% and 0.42%, respectively, compared to the original network, and in terms of model complexity, we can see that FLOPs, number of parameters, and Weight size are reduced by 2.8%, 33.0%, and 32.3%, respectively, and FPS reaches 28 frames per second. The improved algorithm greatly reduces the model complexity and decreases the dependence on hardware devices while improving the classification accuracy and anti-interference capability. This provides an important reference basis for deploying automated underground coal gangue sorting, which helps to realize intelligent integrated mining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
更伟大的利益完成签到,获得积分10
4秒前
5秒前
Selonfer发布了新的文献求助200
6秒前
6秒前
Katherine发布了新的文献求助20
7秒前
xxxxx发布了新的文献求助10
8秒前
9秒前
陪你长大发布了新的文献求助10
10秒前
貔貅完成签到,获得积分10
12秒前
藤椒辣鱼应助科研通管家采纳,获得10
12秒前
ceeray23应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得30
13秒前
kkk完成签到 ,获得积分10
14秒前
Selonfer完成签到,获得积分10
15秒前
可能可能最可能不像不像不太像完成签到 ,获得积分10
16秒前
17秒前
Bi8bo完成签到 ,获得积分10
17秒前
20秒前
桐桐应助zxz采纳,获得10
23秒前
陪你长大完成签到,获得积分10
23秒前
Jasper应助xxxxx采纳,获得10
24秒前
25秒前
40秒前
41秒前
orixero应助糊糊采纳,获得10
42秒前
chandlusf发布了新的文献求助10
45秒前
时见麓完成签到 ,获得积分10
51秒前
moiumuio完成签到,获得积分10
53秒前
Wendy完成签到 ,获得积分10
59秒前
888发布了新的文献求助30
59秒前
kyfbrahha完成签到 ,获得积分10
1分钟前
1分钟前
昏睡的乌冬面完成签到 ,获得积分10
1分钟前
糊糊发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455593
求助须知:如何正确求助?哪些是违规求助? 3050813
关于积分的说明 9022781
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502690
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387