Generalized Shannon entropy sparse wavelet packet transform for fault detection of traction motor bearings in high-speed trains

火车 计算机科学 小波 小波变换 牵引(地质) 熵(时间箭头) 模式识别(心理学) 算法 数学 人工智能 工程类 物理 机械工程 地图学 量子力学 地理
作者
Limu Qin,Gang Yang,Wen He
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241245320
摘要

An effective structural health monitoring method of traction motor bearings is a powerful guarantee for the safety operation of high-speed trains. However, it is exceptionally difficult to detect bearing fault characteristics from the vibration signals of traction motor bearings operating at high rotational speeds. In this scenario, a generalized Shannon entropy sparse wavelet packet transform (GSWPT) for fault detection of motor bearings is proposed in this paper. Firstly, a generalized Shannon entropy sparse regularization method is proposed to obtain sparse wavelet reconstruction coefficients by extending the definition of the Shannon information entropy, and the non-convex sparse regularization function is minimized by synergistic swarm optimization algorithm. Then, the wavelet node coefficients are weighted according to the second-order cyclostationarity index of the wavelet packet node to further enhance the sparsity of the reconstructed signal. Moreover, the optimal decomposition level of GSWPT is adaptively selected by the maximum sparsity and cyclostationarity criterion. Particularly, in order to verify the bearing fault detection performance of GSWPT in practical engineering, a bearing fault dynamic model of traction motor in high-speed train was established based on Hertz contact theory and the fourth-order Runge-Kutta method to obtain simulated data under strong Gaussian white noise, and a corresponding test platform was constructed to collect experimental data under different operating conditions. Finally, the applications on the simulated and experimental signals of traction motor bearings in high-speed trains demonstrate that GSWPT significantly outperforms the conventional wavelet packet transform, dual-tree complex wavelet packet transform, blind deconvolution, modal decomposition, and Infogram methods to some extent for fault detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高迎蓉关注了科研通微信公众号
刚刚
专注的水壶完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
Ava应助doudou采纳,获得10
2秒前
2秒前
上官若男应助可颂采纳,获得10
2秒前
3秒前
哎呀妈呀发布了新的文献求助10
3秒前
3秒前
zzx完成签到,获得积分10
4秒前
何何完成签到 ,获得积分10
4秒前
jackhlj完成签到,获得积分10
4秒前
香蕉觅云应助乐小佳采纳,获得10
5秒前
大胆夜绿完成签到,获得积分10
5秒前
青wu完成签到,获得积分10
5秒前
6秒前
竹筏过海应助锦鲤云间月采纳,获得30
6秒前
菠萝吹雪遇见梨花诗完成签到 ,获得积分10
6秒前
杨天水发布了新的文献求助10
7秒前
7秒前
VDC应助梁liang采纳,获得30
7秒前
chen发布了新的文献求助10
7秒前
7秒前
青wu发布了新的文献求助10
8秒前
a龙完成签到,获得积分10
8秒前
眯眯眼的老鼠完成签到,获得积分20
8秒前
无花果应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
9秒前
wanci应助嗯哼采纳,获得10
9秒前
nanan完成签到,获得积分10
9秒前
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
Hungrylunch应助科研通管家采纳,获得20
9秒前
Cassie应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
暴躁四叔应助科研通管家采纳,获得20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672